[go: up one dir, main page]

login
Denominators of continued fraction convergents to sqrt(983).
2

%I #17 Mar 19 2017 13:08:40

%S 1,2,3,17,530,2667,3197,9061,564979,1139019,1703998,9659009,301133277,

%T 1515325394,1816458671,5148242736,321007508303,647163259342,

%U 968170767645,5488017097567,171096700792222,860971521058677,1032068221850899,2925107964760475

%N Denominators of continued fraction convergents to sqrt(983).

%H Vincenzo Librandi, <a href="/A042903/b042903.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Rec#order_16">Index entries for linear recurrences with constant coefficients</a>, signature (0, 0, 0, 0, 0, 0, 0, 568176, 0, 0, 0, 0, 0, 0, 0, -1).

%F G.f.: -(x^14 -2*x^13 +3*x^12 -17*x^11 +530*x^10 -2667*x^9 +3197*x^8 -9061*x^7 -3197*x^6 -2667*x^5 -530*x^4 -17*x^3 -3*x^2 -2*x -1) / (x^16 -568176*x^8 +1). - _Colin Barker_, Dec 25 2013

%F a(n) = 568176*a(n-8) - a(n-16) for n>15. - _Vincenzo Librandi_, Feb 01 2014

%t Denominator[Convergents[Sqrt[983], 30]] (* _Vincenzo Librandi_, Feb 01 2014 *)

%Y Cf. A042902, A040951.

%K nonn,frac,easy

%O 0,2

%A _N. J. A. Sloane_.

%E More terms from _Colin Barker_, Dec 25 2013