[go: up one dir, main page]

login
A042807
Denominators of continued fraction convergents to sqrt(934).
2
1, 1, 2, 7, 9, 16, 57, 1726, 5235, 6961, 12196, 43549, 55745, 99294, 6013385, 6112679, 12126064, 42490871, 54616935, 97107806, 345940353, 10475318396, 31771895541, 42247213937, 74019109478, 264304542371, 338323651849, 602628194220, 36496015305049
OFFSET
0,3
LINKS
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6069130, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1).
FORMULA
G.f.: -(x^26 -x^25 +2*x^24 -7*x^23 +9*x^22 -16*x^21 +57*x^20 -1726*x^19 +5235*x^18 -6961*x^17 +12196*x^16 -43549*x^15 +55745*x^14 -99294*x^13 -55745*x^12 -43549*x^11 -12196*x^10 -6961*x^9 -5235*x^8 -1726*x^7 -57*x^6 -16*x^5 -9*x^4 -7*x^3 -2*x^2 -x -1)/(x^28 -6069130*x^14 +1). - Vincenzo Librandi, Jan 30 2014
a(n) = 6069130*a(n-14) - a(n-28) for n>27. - Vincenzo Librandi, Jan 30 2014
MATHEMATICA
Denominator[Convergents[Sqrt[934], 30]] (* Harvey P. Dale, May 28 2013 *)
CoefficientList[Series[-(x^26 - x^25 + 2 x^24 - 7 x^23 + 9 x^22 - 16 x^21 + 57 x^20 - 1726 x^19 + 5235 x^18 - 6961 x^17 + 12196 x^16 - 43549 x^15 + 55745 x^14 - 99294 x^13 - 55745 x^12 - 43549 x^11 - 12196 x^10 - 6961 x^9 - 5235 x^8 - 1726 x^7 - 57 x^6 - 16 x^5 - 9 x^4 - 7 x^3 - 2 x^2 - x - 1)/(x^28 - 6069130 x^14 + 1), {x, 0, 30}], x] (* Vincenzo Librandi, Jan 30 2014 *)
CROSSREFS
Sequence in context: A041395 A042345 A041973 * A005988 A199537 A079326
KEYWORD
nonn,frac,easy
AUTHOR
EXTENSIONS
More terms from Vincenzo Librandi, Jan 20 2014
STATUS
approved