[go: up one dir, main page]

login
A042793
Denominators of continued fraction convergents to sqrt(927).
2
1, 2, 9, 47, 150, 797, 3338, 7473, 451718, 910909, 4095354, 21387679, 68258391, 362679634, 1518976927, 3400633488, 205556986207, 414514605902, 1863615409815, 9732591654977, 31061390374746, 165039543528707, 691219564489574, 1547478672507855, 93539939914960874
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 455056, 0, 0, 0, 0, 0, 0, 0, -1).
FORMULA
G.f.: -(x^14 -2*x^13 +9*x^12 -47*x^11 +150*x^10 -797*x^9 +3338*x^8 -7473*x^7 -3338*x^6 -797*x^5 -150*x^4 -47*x^3 -9*x^2 -2*x -1) / (x^16 -455056*x^8 +1). - Colin Barker, Dec 23 2013
a(n) = 455056*a(n-8) - a(n-16) for n>15. - Vincenzo Librandi, Jan 29 2014
MAPLE
convert(sqrt(927), confrac, 30, cvgts): denom(cvgts); # Wesley Ivan Hurt, Dec 23 2013
MATHEMATICA
Denominator[Convergents[Sqrt[927], 30]] (* Wesley Ivan Hurt, Dec 23 2013 *)
PROG
(Magma) I:=[1, 2, 9, 47, 150, 797, 3338, 7473, 451718, 910909, 4095354, 21387679, 68258391, 362679634, 1518976927, 3400633488]; [n le 16 select I[n] else 455056*Self(n-8)-Self(n-16): n in [1..30]]; // Vincenzo Librandi, Jan 29 2014
CROSSREFS
Sequence in context: A032079 A002395 A356142 * A059272 A228341 A289576
KEYWORD
nonn,frac,easy
AUTHOR
EXTENSIONS
More terms from Colin Barker, Dec 23 2013
STATUS
approved