[go: up one dir, main page]

login
A041142
Numerators of continued fraction convergents to sqrt(80).
2
8, 9, 152, 161, 2728, 2889, 48952, 51841, 878408, 930249, 15762392, 16692641, 282844648, 299537289, 5075441272, 5374978561, 91075098248, 96450076809, 1634276327192, 1730726404001, 29325898791208, 31056625195209, 526231901914552, 557288527109761
OFFSET
0,1
FORMULA
G.f.: (8+9*x+8*x^2-x^3)/(1-18*x^2+x^4).
a(n) = 18*a(n-2) - a(n-4).
a(n) = (-3*(-2-sqrt(5))^(n+1) + 5*(2-sqrt(5))^(n+1) - 3*(-2+sqrt(5))^(n+1) + 5*(2+sqrt(5))^(n+1))/4. - Colin Barker, Mar 27 2016
a(n) = (5 - 3*(-1)^(n+1))*Lucas(3*(n+1))/4. - Ehren Metcalfe, Apr 15 2019
MATHEMATICA
CoefficientList[Series[(8+9*x+8*x^2-x^3)/(1-18*x^2+x^4), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 29 2013 *)
PROG
(PARI) Vec((8+9*x+8*x^2-x^3)/(1-18*x^2+x^4) + O(x^30)) \\ Colin Barker, Mar 27 2016
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (8+9*x+8*x^2-x^3)/(1-18*x^2+x^4) )); // G. C. Greubel, Apr 16 2019
(Sage) ((8+9*x+8*x^2-x^3)/(1-18*x^2+x^4)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Apr 16 2019
CROSSREFS
Sequence in context: A165467 A239584 A041141 * A307947 A175849 A294468
KEYWORD
nonn,frac,easy
EXTENSIONS
More terms from Colin Barker, Nov 05 2013
First term 1 removed in b-file, formulas and programs by Georg Fischer, Jul 01 2019
STATUS
approved