%I #22 Sep 04 2015 04:00:47
%S 7,8,15,23,38,61,99,1447,1546,2993,4539,7532,12071,19603,286513,
%T 306116,592629,898745,1491374,2390119,3881493,56731021,60612514,
%U 117343535,177956049,295299584,473255633,768555217,11233028671,12001583888,23234612559,35236196447
%N Numerators of continued fraction convergents to sqrt(58).
%H Vincenzo Librandi, <a href="/A041100/b041100.txt">Table of n, a(n) for n = 0..200</a>
%H Kristina Lund, Steven Schlicker and Patrick Sigmon, <a href="http://dx.doi.org/10.2140/involve.2008.1.197">Fibonacci sequences and the space of compact sets</a>, Involve, 1:2 (2008), pp. 159-165.
%H <a href="/index/Rec#order_14">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,198,0,0,0,0,0,0,1).
%F G.f.: -(x^13 -7*x^12 +8*x^11 -15*x^10 +23*x^9 -38*x^8 +61*x^7 +99*x^6 +61*x^5 +38*x^4 +23*x^3 +15*x^2 +8*x +7) / (x^14 +198*x^7 -1). - _Colin Barker_, Nov 08 2013
%p cf:=numtheory:-cfrac(sqrt(58),100):
%p seq(numtheory:-nthnumer(cf,n),n=0..100); # _Robert Israel_, Sep 02 2015
%t Numerator[Convergents[Sqrt[58], 30]] (* _Vincenzo Librandi_, Oct 29 2013 *)
%Y Cf. A041101, A010511.
%K nonn,frac,easy
%O 0,1
%A _N. J. A. Sloane_.
%E More terms from _Colin Barker_, Nov 08 2013