[go: up one dir, main page]

login
Number of ways of numbering the vertices of a cube so sum of the 8 numbers is n.
1

%I #12 Oct 17 2015 17:27:40

%S 1,1,4,7,21,37,85,151,292,490,848,1346,2157,3260,4925,7148,10327,

%T 14477,20177,27483,37194,49431,65277,84945,109873,140394,178377,

%U 224334,280647,348040,429526,526108,641524,777127,937513,1124461,1343567,1597115,1891850

%N Number of ways of numbering the vertices of a cube so sum of the 8 numbers is n.

%C In Redfield 1927 on page 443 he writes "If in V we put 1/(1-x^r) for every s_r, we obtain the infinite series 1 + x + 4x^2 + 7x^3 + 21x^4 + 37x^5 + ..., in which the coefficient of x^t enumerates the distinct configurations obtained by placing a zero or a positive integer at every vertex of the cube, subject to the condition that the sum of the 8 numbers is always t.". - _Michael Somos_, Oct 17 2015

%C Note that the enumeration is modded out by the symmetries of the cube. - _Michael Somos_, Oct 17 2015

%D J. H. Redfield, The theory of group-reduced distributions, Amer. J. Math., 49 (1927), 433-455; reprinted in P. A. MacMahon, Coll. Papers I, pp. 805-827.

%H <a href="/index/Tu#2wis">Index entries for two-way infinite sequences</a>

%F G.f.: (x^12 - x^11 + x^10 + 6*x^8 + x^7 + 8*x^6 + x^5 + 6*x^4 + x^2 - x + 1) / ((1 - x) * (1 - x^2) * (1 - x^3) * (1 - x^4))^2. - _Michael Somos_, Mar 05 2004

%F G.f.: (1/24) * (1 - x)^-8 + (3/8) * (1 - x^2)^-4 + (1/3) * (1 - x)^-2 * (1 - x^3)^-2 + (1/4) * (1 - x^4)^-2. - _Michael Somos_, Oct 17 2015

%F a(n) = -a(-8 - n) for all n in Z. - _Michael Somos_, Oct 17 2015

%e For n=2 the 4 ways are: {0000 0002}, {0000 0011}, {0001 0100}, {0001 1000}.

%e G.f. = 1 + x + 4*x^2 + 7*x^3 + 21*x^4 + 37*x^5 + 85*x^6 + 151*x^7 + 292*x^8 + ...

%p 1/24/(1-x)^8+3/8/(1-x^2)^4+1/3/(1-x^3)^2/(1-x)^2+1/4/(1-x^4)^2;

%t a[ n_] := Ceiling[ (3 n^7 + 84 n^6 + 966 n^5 + 5880 n^4 + If[ OddQ@n, 22547 n^3 + 66276 n^2, 25382 n^3 + 100296 n^2] + 12 n (10547 + 35 If[ OddQ@n, If[ Mod[n, 6] < 5, 32, 0], If[ Mod[n, 6] == 2, 297, 329] + 54 Boole[Mod[n, 4] == 0]]) + 1) / 362880]; (* _Michael Somos_, Oct 17 2015 *)

%o (PARI) {a(n) = if( n<-4, -a(-8 - n), polcoeff( subst( Pol([ 1, -1, -5, 5, 11, -4, -4]), x, x + 1/x) * x^6 / prod(k=1, 4, 1 - x^k)^2 + x * O(x^n), n))}; /* _Michael Somos_, Mar 05 2004 */

%o (PARI) {a(n) = ceil( (3*n^7 + 84*n^6 + 966*n^5 + 5880*n^4 + if( n%2, 22547*n^3 + 66276*n^2, 25382*n^3 + 100296*n^2) + 12*n * (10547 + 35 * if( n%2, if( n%6<5, 32, 0), if( n%6==2, 297, 329) + 54*(n%4==0))) + 1) / 362880)}; /* _Michael Somos_, Oct 17 2015 */

%K nonn

%O 0,3

%A _N. J. A. Sloane_