[go: up one dir, main page]

login
A039634
Fixed point of "n -> n/2 or (n-1)/2 until result is prime".
16
1, 2, 3, 2, 5, 3, 7, 2, 2, 5, 11, 3, 13, 7, 7, 2, 17, 2, 19, 5, 5, 11, 23, 3, 3, 13, 13, 7, 29, 7, 31, 2, 2, 17, 17, 2, 37, 19, 19, 5, 41, 5, 43, 11, 11, 23, 47, 3, 3, 3, 3, 13, 53, 13, 13, 7, 7, 29, 59, 7, 61, 31, 31, 2, 2, 2, 67, 17, 17, 17, 71, 2, 73, 37, 37, 19, 19, 19, 79, 5, 5
OFFSET
1,2
COMMENTS
a(n) is the largest prime whose binary expansion is an initial substring of n's binary expansion. - Charlie Neder, Oct 27 2018
a(1) = 1 by convention. - David A. Corneth, Oct 27 2018
LINKS
MATHEMATICA
ner[ n_Integer ] := FixedPoint[ If[ EvenQ[ # ]&&#>2, #/2, If[ PrimeQ[ # ]||(#=== 1), #, (#-1)/2 ] ]&, n, 20 ]
PROG
(Haskell)
a039634 1 = 1
a039634 n = until ((== 1) . a010051) (flip div 2) n
-- Reinhard Zumkeller, Nov 17 2013
(PARI) a(n)=while(n>3 && !isprime(n), n\=2); n \\ Charles R Greathouse IV, Jun 23 2017
(Python)
from sympy import isprime
def a(n):
while n>1 and not isprime(n): n>>=1
return n
print([a(n) for n in range(1, 82)]) # Michael S. Branicky, Jul 24 2023
KEYWORD
nonn,easy,nice
EXTENSIONS
Offset corrected by Reinhard Zumkeller, Nov 17 2013
STATUS
approved