[go: up one dir, main page]

login
Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 1,2.
0

%I #15 Feb 13 2017 02:43:27

%S 1,7,36,182,911,4557,22786,113932,569661,2848307,14241536,71207682,

%T 356038411,1780192057,8900960286,44504801432,222524007161,

%U 1112620035807,5563100179036,27815500895182,139077504475911,695387522379557

%N Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 1,2.

%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (5,1,-5).

%H <a href="/index/Ar#5-automatic">Index entries for 5-automatic sequences</a>.

%F a(n) = 5a(n-1) + a(n-2) - 5a(n-3).

%F a(n) = (-1)^n/12 -3/8 +7*5^n/24. G.f. x*(1+2*x) / ( (x-1)*(5*x-1)*(1+x) ). - _R. J. Mathar_, Nov 02 2011

%F A007091(a(n)) = A037487(n). - _R. J. Mathar_, Apr 27 2015

%o (PARI) a(n)=([0,1,0; 0,0,1; -5,1,5]^(n-1)*[1;7;36])[1,1] \\ _Charles R Greathouse IV_, Feb 13 2017

%K nonn,base,easy

%O 1,2

%A _Clark Kimberling_