OFFSET
0,4
COMMENTS
REFERENCES
G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 114.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..5000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of f(-q^9,-q^15)/psi(-q) in powers of q where psi(),f() are Ramanujan theta functions. - Michael Somos, Oct 28 2006
Euler transform of period 24 sequence [ 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, ...]. - Michael Somos, Oct 28 2006
a(n) ~ 5^(1/4) * sqrt(2 + sqrt(2)) * exp(sqrt(5*n/3)*Pi/2) / (8*3^(3/4)*n^(3/4)). - Vaclav Kotesovec, May 09 2018
MATHEMATICA
f[x_, y_]:= QPochhammer[-x, x*y]*QPochhammer[-y, x*y]*QPochhammer[x*y, x*y]; CoefficientList[Series[f[-q^9, -q^15]/f[-q, -q^3], {q, 0, 50}], q] (* G. C. Greubel, Apr 15 2018 *)
nmax = 50; CoefficientList[Series[Product[(1 - x^(4*k - 2))*(1 - x^(24*k))*(1 - x^(24*k + 9 - 24))*(1 - x^(24*k - 9))/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, May 09 2018 *)
PROG
(PARI) {a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( eta(x^2+A)/(eta(x+A)*eta(x^4+A))*eta(x^24+A)* prod(k=1, ceil(n/24), (1-x^(24*k-9))*(1-x^(24*k-15)), 1+A), n))} /* Michael Somos, Oct 28 2006 */
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Name corrected by Vaclav Kotesovec, May 09 2018
STATUS
approved