[go: up one dir, main page]

login
A036033
Number of partitions of n into parts not of form 4k+2, 24k, 24k+9 or 24k-9. Also number of partitions in which no odd part is repeated, with at most 4 parts of size less than or equal to 2 and where differences between parts at distance 5 are greater than 1 when the smallest part is odd and greater than 2 when the smallest part is even.
1
1, 1, 1, 2, 3, 4, 5, 7, 10, 12, 15, 20, 26, 32, 39, 49, 62, 75, 90, 111, 136, 163, 194, 234, 282, 334, 394, 469, 557, 654, 765, 900, 1058, 1232, 1431, 1669, 1943, 2248, 2595, 3002, 3470, 3990, 4580, 5265, 6045, 6915, 7897, 9026, 10307, 11733, 13338, 15170
OFFSET
0,4
COMMENTS
Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).
Case k=6, i=5 of Gordon/Goellnitz/Andrews Theorem.
REFERENCES
G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 114.
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of f(-q^9,-q^15)/psi(-q) in powers of q where psi(),f() are Ramanujan theta functions. - Michael Somos, Oct 28 2006
Euler transform of period 24 sequence [ 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, ...]. - Michael Somos, Oct 28 2006
a(n) ~ 5^(1/4) * sqrt(2 + sqrt(2)) * exp(sqrt(5*n/3)*Pi/2) / (8*3^(3/4)*n^(3/4)). - Vaclav Kotesovec, May 09 2018
MATHEMATICA
f[x_, y_]:= QPochhammer[-x, x*y]*QPochhammer[-y, x*y]*QPochhammer[x*y, x*y]; CoefficientList[Series[f[-q^9, -q^15]/f[-q, -q^3], {q, 0, 50}], q] (* G. C. Greubel, Apr 15 2018 *)
nmax = 50; CoefficientList[Series[Product[(1 - x^(4*k - 2))*(1 - x^(24*k))*(1 - x^(24*k + 9 - 24))*(1 - x^(24*k - 9))/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, May 09 2018 *)
PROG
(PARI) {a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( eta(x^2+A)/(eta(x+A)*eta(x^4+A))*eta(x^24+A)* prod(k=1, ceil(n/24), (1-x^(24*k-9))*(1-x^(24*k-15)), 1+A), n))} /* Michael Somos, Oct 28 2006 */
CROSSREFS
Sequence in context: A089597 A022957 A036028 * A124243 A132975 A213267
KEYWORD
nonn,easy
EXTENSIONS
Name corrected by Vaclav Kotesovec, May 09 2018
STATUS
approved