[go: up one dir, main page]

login
A036000
Number of partitions in parts not of the form 25k, 25k+1 or 25k-1. Also number of partitions with no part of size 1 and differences between parts at distance 11 are greater than 1.
1
0, 1, 1, 2, 2, 4, 4, 7, 8, 12, 14, 21, 24, 34, 41, 55, 66, 88, 105, 137, 165, 210, 253, 319, 382, 476, 572, 704, 842, 1031, 1228, 1492, 1775, 2140, 2539, 3047, 3601, 4299, 5071, 6023, 7083, 8382, 9828, 11584, 13552, 15912, 18568, 21736, 25296, 29520
OFFSET
1,4
COMMENTS
Case k=12,i=1 of Gordon Theorem.
REFERENCES
G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 109.
FORMULA
a(n) ~ exp(2*Pi*sqrt(11*n/3)/5) * 11^(1/4) * sin(Pi/25) / (3^(1/4) * 5^(3/2) * n^(3/4)). - Vaclav Kotesovec, May 10 2018
MATHEMATICA
nmax = 60; Rest[CoefficientList[Series[Product[(1 - x^(25*k))*(1 - x^(25*k+ 1-25))*(1 - x^(25*k- 1))/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, May 10 2018 *)
CROSSREFS
Sequence in context: A240018 A035989 A240019 * A002865 A085811 A187219
KEYWORD
nonn,easy
STATUS
approved