[go: up one dir, main page]

login
A035711
Coordination sequence for 16-dimensional cubic lattice.
1
1, 32, 512, 5472, 44032, 285088, 1549824, 7288544, 30316544, 113461024, 387328512, 1219605600, 3575055360, 9832110240, 25537728000, 63001648608, 148348809216, 334834507296, 727126954496, 1524223640416, 3093172083712
OFFSET
0,2
COMMENTS
Coordination sequence for 16-dimensional cyclotomic lattice Z[zeta_32].
LINKS
M. Beck and S. Hosten, Cyclotomic polytopes and growth series of cyclotomic lattices, arXiv math.CO/0508136
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
Joan Serra-Sagrista, Enumeration of lattice points in l_1 norm, Inf. Proc. Lett. 76 (1-2) (2000) 39-44.
Index entries for linear recurrences with constant coefficients, signature (16, -120, 560, -1820, 4368, -8008, 11440, -12870, 11440, -8008, 4368, -1820, 560, -120, 16, -1).
FORMULA
G.f.: ((1+x)/(1-x))^16.
n*a(n) = 32*a(n-1) + (n-2)*a(n-2) for n > 1. - Seiichi Manyama, Aug 20 2018
MATHEMATICA
CoefficientList[Series[((1+x)/(1-x))^16, {x, 0, 20}], x] (* Harvey P. Dale, Dec 27 2015 *)
CROSSREFS
Sequence in context: A371453 A271577 A116003 * A035477 A109384 A248070
KEYWORD
nonn,easy
AUTHOR
Joan Serra-Sagrista (jserra(AT)ccd.uab.es)
EXTENSIONS
Recomputed by N. J. A. Sloane, Nov 25 1998
Formula clarified by Harvey P. Dale, Dec 27 2015
STATUS
approved