OFFSET
1,23
LINKS
Robert Israel, Table of n, a(n) for n = 1..5000
FORMULA
G.f.: (-1 + 1/Product_{k>=0} (1 - x^(8*k + 7)))*(-1 + 1/Product_{k>=1} (1 - x^(8*k))). - Robert Price, Aug 13 2020
MAPLE
np:= combinat:-numbpart:
NP:= proc(n, m) if m > n then np(n) else np(n, m) fi end proc;
f:= proc(n) local r0;
r0:= (-n) mod 8;
add(np(s)*add(NP((n-8*s-7*r)/8, r), r=r0 .. floor((n-8*s)/7), 8), s=1..floor((n-1)/8))
end proc:
seq(f(n), n=1..100); # Robert Israel, Apr 06 2016
MATHEMATICA
nmax = 86; s1 = Range[1, nmax/8]*8; s2 = Range[0, nmax/8]*8 + 7;
Table[Count[IntegerPartitions[n, All, s1~Join~s2],
x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 1, nmax}] (* Robert Price, Aug 13 2020 *)
nmax = 86; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(8 k)), {k, 1, nmax}])*(-1 + 1/Product[(1 - x^(8 k + 7)), {k, 0, nmax}]), {x, 0, nmax}], x] (* Robert Price, Aug 13 2020 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved