[go: up one dir, main page]

login
A035678
Number of partitions of n into parts 8k and 8k+7 with at least one part of each type.
2
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 3, 0, 0, 0, 0, 0, 1, 3, 6, 0, 0, 0, 0, 1, 3, 7, 11, 0, 0, 0, 1, 3, 7, 14, 18, 0, 0, 1, 3, 7, 15, 25, 29, 0, 1, 3, 7, 15, 28, 43, 44, 1, 3, 7, 15, 29, 50, 69, 67, 3, 7, 15, 29, 53, 84, 110, 99, 7, 15, 29, 54, 91, 138, 168
OFFSET
1,23
LINKS
FORMULA
G.f.: (-1 + 1/Product_{k>=0} (1 - x^(8*k + 7)))*(-1 + 1/Product_{k>=1} (1 - x^(8*k))). - Robert Price, Aug 13 2020
MAPLE
np:= combinat:-numbpart:
NP:= proc(n, m) if m > n then np(n) else np(n, m) fi end proc;
f:= proc(n) local r0;
r0:= (-n) mod 8;
add(np(s)*add(NP((n-8*s-7*r)/8, r), r=r0 .. floor((n-8*s)/7), 8), s=1..floor((n-1)/8))
end proc:
seq(f(n), n=1..100); # Robert Israel, Apr 06 2016
MATHEMATICA
nmax = 86; s1 = Range[1, nmax/8]*8; s2 = Range[0, nmax/8]*8 + 7;
Table[Count[IntegerPartitions[n, All, s1~Join~s2],
x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 1, nmax}] (* Robert Price, Aug 13 2020 *)
nmax = 86; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(8 k)), {k, 1, nmax}])*(-1 + 1/Product[(1 - x^(8 k + 7)), {k, 0, nmax}]), {x, 0, nmax}], x] (* Robert Price, Aug 13 2020 *)
KEYWORD
nonn
STATUS
approved