[go: up one dir, main page]

login
A035647
Number of partitions of n into parts 6k+2 and 6k+4 with at least one part of each type.
3
0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 0, 4, 0, 5, 0, 7, 0, 11, 0, 14, 0, 19, 0, 26, 0, 33, 0, 43, 0, 55, 0, 70, 0, 88, 0, 111, 0, 137, 0, 170, 0, 208, 0, 256, 0, 311, 0, 378, 0, 456, 0, 551, 0, 658, 0, 790, 0, 940, 0, 1119, 0, 1325, 0, 1570, 0, 1847, 0, 2179, 0, 2554, 0, 2996, 0, 3499
OFFSET
1,10
LINKS
FORMULA
G.f.: (-1 + 1/Product_{k>=0} (1 - x^(6 k + 2)))*(-1 + 1/Product_{k>=0} (1 - x^(6 k + 4))). - Robert Price, Aug 16 2020
MATHEMATICA
nmax = 74; s1 = Range[0, nmax/6]*6 + 2; s2 = Range[0, nmax/6]*6 + 4;
Table[Count[IntegerPartitions[n, All, s1~Join~s2],
x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 1, nmax}] (* Robert Price, Aug 13 2020 *)
nmax = 74; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(6 k + 2)), {k, 0, nmax}])*(-1 + 1/Product[(1 - x^(6 k + 4)), {k, 0, nmax}]), {x, 0, nmax}], x] (* Robert Price, Aug 16 2020 *)
CROSSREFS
Bisections give A035620 (even part), A000004 (odd part).
Sequence in context: A366543 A286663 A114402 * A357487 A225437 A065806
KEYWORD
nonn
STATUS
approved