[go: up one dir, main page]

login
A035313
(Largest) diagonal of the Zorach additive triangle A035312.
12
1, 3, 9, 26, 66, 154, 346, 771, 1726, 3887, 8768, 19700, 43890, 96717, 210665, 453893, 968903, 2053260, 4328489, 9093971, 19068611, 39943689, 83628399, 175018523, 366081209, 765102907, 1597315656, 3330380593, 6933810145
OFFSET
0,2
COMMENTS
From Philippe Lallouet (philip.lallouet(AT)wanadoo.fr), Apr 22 2007: (Start)
Starting with 1, smallest sequence for which:
all its terms a1(n).............................. 1,3,9,26,66
all terms of first differences a2(n)=a1(n+1)-a1(n) 2,6,17,40
all terms of second differences a3(n)=a2(n+1)-a2(n) 4,11,23
...
all terms of (1+i)th differences ai(n)=ai-1(n+1)-ai-1(n)
are different for any n and any i (End)
Which is to say, this sequence is the lexicographically earliest sequence of positive integers such that the sequence itself and its n-th differences for n >= 1 are pairwise disjoint. - David W. Wilson, Feb 26 2012
Conjecturally, every positive integer occurs in the sequence or one of its n-th differences, which would imply that the sequence and its n-th differences partition the positive integers. - David W. Wilson, Feb 26 2012
Conjecture: lim(n->infinity, a(n+1)/a(n)) = 2. - David W. Wilson, Feb 26 2012
Note that the n-th differences yield the n-th subdiagonals (parallels to the right edge) in the triangle A035312. Therefore Lallouet's statement and Wilson's 1st comment above are just rephrasing the definition of that triangle. - M. F. Hasler, May 09 2013
Binomial transform of A035311. Hence, from the observed asymptotic equality A035311(n) ~ 2*n, a stronger statement than the one given above follows: a(n) ~ n*2^n. - Andrey Zabolotskiy, Feb 08 2017
EXAMPLE
Start with 1; 2 is the next, then add 1+2 to get 3, then 4 is next, then 4+2=6 and 6+3 is 9, then 5 is not next because 5+4=9 and 9 was already used, so 7 is next...which ultimately generates 26 in the final column...
MATHEMATICA
(* Assuming n <= t(n, 1) <= 3n *) rows = 29; uniqueQ[t1_, n_] := (t[n, 1] = t1; Do[t[n, k] = t[n, k-1] + t[n-1, k-1], {k, 2, n}]; n*(n+1)/2 == Length[ Union[ Flatten[ Table[t[m, k], {m, 1, n}, {k, 1, m}]]]]); t[n_, 1] := t[n, 1] = Select[ Complement[Range[n, 3 n], Flatten[ Table[t[m, k], {m, 1, n-1}, {k, 1, m}]]], uniqueQ[#, n] &, 1][[1]]; Last /@ Table[t[n, k], {n, 1, rows}, {k, 1, n}] (* Jean-François Alcover, Jun 05 2012 *)
PROG
(Haskell) -- See link for Haskell program.
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
STATUS
approved