[go: up one dir, main page]

login
A034928
Triangle of ballot numbers.
2
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 4, 4, 1, 1, 4, 6, 9, 9, 1, 1, 5, 8, 15, 21, 21, 1, 1, 6, 10, 22, 36, 51, 51, 1, 1, 7, 12, 30, 54, 91, 127, 127, 1, 1, 8, 14, 39, 75, 142, 232, 323, 323, 1, 1, 9, 16, 49, 99, 205, 370, 603, 835, 835, 1, 1, 10, 18, 60, 126, 281, 545
OFFSET
0,8
LINKS
M. Aigner, Motzkin Numbers, Europ. J. Comb. 19 (1998), 663-675.
FORMULA
a(0, 0)=a(0, 1)=1, a(n, n+1)=a(n, n), a(n, k)=a(n-1, 0)+...+a(n-1, k-2)+a(n-1, k) (n >= 1, 0<=k<=n).
Or, from David W. Wilson: a(n, 0) = 1; a(n, 1) = 1; a(n, 2) = n; a(n, k) = 0 if k > n+1; a(n, k) = a(n-1, k) + a(n, k-1) + a(n-1, k-2) - a(n-1, k-1) otherwise.
EXAMPLE
Triangle begins
1, 1,
1, 1, 1,
1, 1, 2, 2,
1, 1, 3, 4, 4,
1, 1, 4, 6, 9, 9,
1, 1, 5, 8, 15, 21, 21,
1, 1, 6, 10, 22, 36, 51, 51,
1, 1, 7, 12, 30, 54, 91, 127, 127,
1, 1, 8, 14, 39, 75, 142, 232, 323, 323,
1, 1, 9, 16, 49, 99, 205, 370, 603, 835, 835,
...
MATHEMATICA
a[n_, 0] := 1; a[n_, 1] := 1; a[n_, 2] := n; a[n_, k_] := If [k > n + 1, 0, a[n - 1, k] + a[n, k - 1] + a[n - 1, k - 2] - a[n - 1, k - 1]]; Grid[Table[a[n, k], {n, 0, 10}, {k, 0, n + 1}]] (* Replace Grid with Flatten to get the sequence. *) (* L. Edson Jeffery, Aug 02 2014 (after David W. Wilson) *)
PROG
(Haskell)
a034928 n k = a034928_tabf !! n !! k
a034928_row n = a034928_tabf !! n
a034928_tabf = iterate f [1, 1] where
f us = vs ++ [last vs] where
vs = zipWith (+) us (0 : scanl (+) 0 us)
-- Reinhard Zumkeller, Sep 20 2014
CROSSREFS
Right-hand edge is A001006.
Cf. A247364 (mirrored).
Sequence in context: A248736 A292508 A237597 * A280267 A161671 A144444
KEYWORD
nonn,tabf,easy
AUTHOR
EXTENSIONS
More terms from David W. Wilson.
STATUS
approved