[go: up one dir, main page]

login
Triangle of number of indecomposable linear [ n,k ] GF(4) codes (n >= 1, k >= 1) without 0 columns.
0

%I #4 Mar 30 2012 16:47:28

%S 1,1,1,1,1,2,1,1,4,4,1,1,6,14,6,1,1,9,38,38,9,1,1,13,104,238,104,13,1

%N Triangle of number of indecomposable linear [ n,k ] GF(4) codes (n >= 1, k >= 1) without 0 columns.

%D H. Fripertinger and A. Kerber, in AAECC-11, Lect. Notes Comp. Sci. 948 (1995), 194-204.

%H H. Fripertinger, <a href="http://www.mathe2.uni-bayreuth.de/frib/codes/tables.html">Isometry Classes of Codes</a>

%Y Cf. A034253, A034254, A034356, A034363-A034374.

%K tabl,nonn

%O 1,6

%A _N. J. A. Sloane_.