[go: up one dir, main page]

login
A033697
Theta series of lattice A_2 tensor D_5 (dimension 10, det. 3888, min. norm 4).
1
1, 0, 120, 480, 1950, 3360, 9000, 16800, 25320, 39840, 76320, 80160, 146190, 193920, 236400, 309600, 510270, 455040, 722520, 889440, 994176, 1200480, 1798560, 1525440, 2319480, 2655360, 2805360, 3255360, 4787580, 3861600, 5594400, 6297120, 6528360, 7267680
OFFSET
0,3
COMMENTS
This theta series is an element of the space of modular forms on Gamma_1(12) with Kronecker character -3 in modulus 12, weight 5, and dimension 11. - Andy Huchala, May 16 2023
LINKS
PROG
(Magma)
prec := 30;
basis := [1, -1, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, -1, 1];
S := Matrix(15, basis);
L := LatticeWithBasis(S);
T := ThetaSeriesModularForm(L);
Coefficients(PowerSeries(T, prec)); // Andy Huchala, May 16 2023
CROSSREFS
Sequence in context: A235232 A304284 A167562 * A157960 A067915 A305072
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Andy Huchala, May 16 2023
STATUS
approved