[go: up one dir, main page]

login
A033562
a(n) = 2*n^3 + 1.
9
1, 3, 17, 55, 129, 251, 433, 687, 1025, 1459, 2001, 2663, 3457, 4395, 5489, 6751, 8193, 9827, 11665, 13719, 16001, 18523, 21297, 24335, 27649, 31251, 35153, 39367, 43905, 48779, 54001, 59583, 65537, 71875, 78609, 85751, 93313, 101307, 109745, 118639, 128001
OFFSET
0,2
COMMENTS
A058895(n)^3 + A068601(n)^3 + a(n)^3 = A185065(n)^3, for n>0. - Vincenzo Librandi, Mar 13 2012
FORMULA
G.f.: 1 + x*(3 + 5*x + 5*x^2 - x^3)/(1-x)^4. - Vincenzo Librandi, Mar 13 2012
E.g.f.: (1 + 2*x + 6*x^2 + 2*x^3)*exp(x). - G. C. Greubel, Oct 12 2019
MAPLE
seq(2*n^3+1, n=0..50); # G. C. Greubel, Oct 12 2019
MATHEMATICA
2*Range[0, 50]^3+1 (* Vladimir Joseph Stephan Orlovsky, Feb 14 2011*)
CoefficientList[Series[1+x*(3+5x+5x^2-x^3)/(1-x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 13 2012 *)
LinearRecurrence[{4, -6, 4, -1}, {1, 3, 17, 55}, 50] (* Harvey P. Dale, Aug 14 2023 *)
PROG
(PARI) a(n)=2*n^3+1 \\ Charles R Greathouse IV, Mar 11 2012
(Magma) [2*n^3+1: n in [0..50]]; // G. C. Greubel, Oct 12 2019
(Sage) [2*n^3+1 for n in range(50)] # G. C. Greubel, Oct 12 2019
(GAP) List([0..50], n-> 2*n^3+1); # G. C. Greubel, Oct 12 2019
CROSSREFS
KEYWORD
nonn,easy
EXTENSIONS
Terms a(34) onward added by G. C. Greubel, Oct 12 2019
STATUS
approved