[go: up one dir, main page]

login
A033480
3x + 1 sequence beginning at 15.
3
15, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1
OFFSET
0,1
FORMULA
a(0) = 15, a(n) = a(n - 1)/2 if a(n - 1) is even or 3a(n - 1) + 1 if a(n - 1) is odd.
From Colin Barker, Oct 04 2019: (Start)
G.f.: (15 + 46*x + 23*x^2 + 55*x^3 - 11*x^4 + 83*x^5 - 17*x^6 + 125*x^7 - 26*x^8 - 13*x^9 - 140*x^10 - 70*x^11 - 35*x^12 - 4*x^13 - 2*x^14 - x^15 - 14*x^16 - 7*x^17) / ((1 - x)*(1 + x + x^2)).
a(n) = a(n-3) for n>17.
(End)
EXAMPLE
15 is odd, so the next term is 3 * 15 + 1 = 46.
46 is even, so the next term is 46/2 = 23.
MATHEMATICA
NestList[If[EvenQ[#], #/2, 3# + 1] &, 15, 100] (* Harvey P. Dale, Dec 27 2011 *)
PROG
(PARI) a(n)=my(k=15); for(i=1, n, k=if(k%2, k/2, 3*k+1)); k \\ Charles R Greathouse IV, May 04 2015
(PARI) Vec((15 + 46*x + 23*x^2 + 55*x^3 - 11*x^4 + 83*x^5 - 17*x^6 + 125*x^7 - 26*x^8 - 13*x^9 - 140*x^10 - 70*x^11 - 35*x^12 - 4*x^13 - 2*x^14 - x^15 - 14*x^16 - 7*x^17) / ((1 - x)*(1 + x + x^2)) + O(x^80)) \\ Colin Barker, Oct 04 2019
CROSSREFS
Cf. A033479.
Row 15 of A347270.
Sequence in context: A068513 A267079 A290583 * A041434 A136430 A139278
KEYWORD
nonn,easy
AUTHOR
STATUS
approved