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1. Introduction

The problem of Josephus is the following. We are given two positive integers n, q.
There are n places arranged around a circle, and numbered clockwise 1,2,... ,n. Each
of n people takes one of the places, then (please excuse this, but we didn’t invent the
problem!) every kth one is executed, until just one remains. More precisely, the occupant
of place k is ‘removed’ first, and in general, if some place j has just been vacated, then the
kth one of the places clockwise around from j that are still occupied will be vacated next.
One question is this: if you would like to be the last survivor, then into what place should
you go initially? We denote the answer to this question by J,(n). For example, if n =5
and ¢ = 2, the order of execution is 2, 4, 1, 5, 3, and J2(5) = 3. There are other questions
that have been raised about the problem, and it has an extensive literature (see [1]-[10]).
In this paper we deal with the J,(n)’s.

What we have to contribute is the observation that in one of the algorithms that
has been proposed for solving the problem, the sequence of numbers that is generated is
remarkably well approximated by a single term of its asymptotic series. This result, which
essentially is a property of the iterated ‘ceiling’ function, as we will see below, is both of
independent interest and also permits one to write down an explicit-looking formula for
J3(n) ((5) below).

More precisely, we write ‘[-]” and ‘||’ for the ceiling and the floor functions respec-
tively. For a fixed real @ > 1 we study the sequence fo = 1, fo41 = [afn] (n > 0).
We show that although these iterates grow exponentially fast, they are approximable to
within O(1) by a single term of their asymptotic expansion.

2. Results

In [3], section 3.3, an interesting approach to the Josephus problem is described, and
the authors give the following procedure for finding J,(n):

a) Define a sequence D%q) b
q Yy

D =[—4=D"\]  (n21; D" =1). (1)
=
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(b) Determine the least integer k such that D;Cq) > (¢g—1)n.
(c) Then the answer is Jy(n) =gn+ 1 — qu).
We study the behavior of the D,(lq‘). The striking feature that we find is that they are

extremely well approximated by the first term of their asymptotic formulas, for large n

and fixed q.
Theorem 1. For each integer ¢ > 2 there is a real number K(q) such that

Da(e) = K(a)(27)" + ena (2)

in which all €, =0 and if ¢ > 3 then
—(¢—2) <€y <0 (n>0). (3)

As a trivial corollary, we note that clearly K(2) = 1, so the well known formula

Jo(n) =142(n —2les2nly  (n=0,1,..))

holds.
Corollary 1. We have the ‘exact formula’
3
DY = |KB)(3)")  (1=0,1,..), (@
and so 5 -
Ja(n) = 3n+1— | K(3)(3) Hoeg Gl (n=0,1,..). (5)

Here the constant is K(3) = 1.62227 05028 84767 31595 69509 82899 32411. . ..

3. Proofs

We begin by proving a little more than is necessary for theorem 1 above. Fix a > 1,

and let f(z) = [ax]. We study the iterates f, = f,(«) of f, defined by
favr = F(fn) = [afa]l  (n20; fo=1). (6)
Proposition 1. There exists a constant ¢ = ¢(«) such that
fa(@) ~c(a)a™  (n = oo). (7)
Proof. Define
Up = fn/a™. (8)
We claim that {u,} is increasing and bounded from above. It increases because
a" g,y = [oz"""lun-\ > oy,
and is bounded from above because
"My, = [oz""Huﬂ <14 a"u,

implies that
Uptr < up+a "1 (n>0),
which in turn implies that u, < a/(a—1) for alln > 0. g
We now study the error term in the asymptotic formula (7). The next proposition
shows that the error is very small in many cases.
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Proposition 2. If @ > 2 or if @ =2 — 1/m for integer m > 2, then
Yn>0:f, =|cla)a"].
Proof. We define numbers {e, } by
fa=ofarten=lafan] (n>1), (9)
so 0 <e, < 1. With the u, of (8) above, we have
fro=una™ = qup_10" N+ e, = up_1a” + ey,

from which u,, = u,—1 + €,/a™ and

n er oo er
U =14y E @) =14 &
U —I—k_lak c(a) + -

It follows that

fn=cla)a™ — Z en—ifj, (10)

and that

Thus 0 < ¢(a)a™ — fr, < 1/(a — 1) for all n, and if @ > 2 the result follows. If @ = 2 the
result is trivial.
Finally, if « is rational we can bound the e,’s away from 1 and extend the result

slightly. Indeed, suppose @ = 2 — 1/m for integer m > 2. Then (9) shows that all
len| < (m —1)/m, and (10) yields

=1.
m aoa-—1

However it cannot happen that all e,, = (m — 1)/m for n > ng, for otherwise we would
have f, = ¢(a)(2 —1/m)™ — 1, but the right side cannot be an integer for all n > ng,
completing the proof. B

To finish the proof of theorem 1 we return to the parameter values that occur in the
Josephus problem. Let oo = ¢/(¢ — 1) and write K(q) for ¢(e) in (5), to find that

\n —1.n
DY = K(o)(—10)" = ey ()"
q = q

Now from (9),



and so (¢ — 1)e, is an integer in the range [—(q — 2),0].
now follows, and the proof is complete.

4. The function c(a).

The estimate (3) of theorem 1

In this section we study the ‘constant’ ¢(«), as a function of a. A brief table of ¢(«),

showing some of its irregular behavior, is below.

A graph of ¢(a), for 1.1 < a < 2.5 is shown in Fig. 1.

1.050000
1.100000
1.103831
1.108731
1.110087
1.110631
1.111891
1.250000
1.500000
1.900000
2.000000
2.001000
2.500000
5.500000
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1.2701620...
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1.9908393...
1.3653870...
1.1311946...
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Fig. 1: ¢(a) vs. a.
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It is easy to see that at the integers the function ¢(«) has jump discontinuities of the
following kind:

c(??”c—l—O):c(m)—l—#:1—|—L (m=2,3,...).

m—1 m—1

We are also able to make a quantitative statement about the jumps at the Josephus points,
as the following proposition shows.

Proposition 3. At the Josephus points oy = ¢q/(¢ — 1), the function ¢(«) has jump
discontinuities also, and they are of the form

cla+0) = ac(a) (. =2,3/2,4/3,5/4, ...). (11)

Proof. We claim that at such a value of o the sequences {f,(a)} and {f,(a 4+ 0)} are
related by
fr(a) = faci(a+0)+1 (n>1), (12)

which would establish the truth of the proposition. To prove (12), it suffices to show that

[(a+€e)(fula) =1)] = fati(a) -1,

for each n > 1 and all small enough e.
But the left side is

[aful@) = a+ efula) — €] = [afala) = 1+ (1 —a —€) + efa(a)]

— fafala) + efala) = (e —)] -1

= [+ ) — e+ )] -1

Suppose (¢ — 1)\ fn(«). Then the last member above is (¢/(¢ — 1)) fu(@) — 1, i.e., it is
fnt1(a) — 1, as required. Next suppose that f,(a) =1 (mod (¢ —1)). Then

say, and the last member above is

s L eule) = 1= | 1= = o/l = Dfafa)] <1 = fupr() — 1

A similar easy calculation handles all of the other residue classes simultaneously. g

5. Remarks, and a conjecture

We must remark that as it stands, our ‘explicit’ formula for J3(n) is not an improve-
ment over the algorithm in (1), because the computation of the universal constant K (3)
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requires the D,’s of (1). This situation could change if some independent method were
found to calculate K (3) with high precision.

We would like to know more about the function ¢(a). In particular, does it satisfy
some functional equation? Can one evaluate it at the Josephus points in some way that is
quite independent of the algorithm (2)?

Finally, we have a conjecture about the error in the general asymptotic formulas above.
In the Josephus case, where o = ¢/(¢—1), we conjecture that the numbers (¢ —1)e,,, which
assume only the values 0,1,...,¢ — 2, in fact are asymptotically uniformly distributed on
those ¢ — 1 values. This would imply that if ¢ > 2,

lim Prob{pgg)_{K(q)( q )"—(q_g)}gt (g —2) }

1 /t ey
= — € Y.
V2T J_ Y
The conjecture seems similar to asking for a proof that a given real number is normal in
a given base, and so it is likely to be very difficult to prove.
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