[go: up one dir, main page]

login
A031744
Numbers k such that the least term in the periodic part of the continued fraction for sqrt(k) is 66.
1
1090, 4358, 9804, 17428, 27230, 39210, 53368, 69704, 88218, 108910, 131780, 156828, 184054, 213458, 245040, 278800, 314738, 352854, 393148, 435620, 480270, 527098, 576104, 627288, 680650, 736190, 793908, 853804, 915878, 980130, 1046560, 1115168
OFFSET
1,1
COMMENTS
a(n) = 1089n^2 + n for n < 69, but a(69) = 5040092. - Charles R Greathouse IV, Aug 04 2017
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
MATHEMATICA
lt66Q[n_]:=Module[{s=Sqrt[n], c}, c=If[IntegerQ[s], 1, Min[ ContinuedFraction[ s ][[2]]]]; c==66]; Select[Range[1120000], lt66Q] (* Harvey P. Dale, Nov 10 2013 *)
CROSSREFS
Sequence in context: A023101 A169977 A345408 * A031654 A031531 A161118
KEYWORD
nonn
STATUS
approved