[go: up one dir, main page]

login
A031419
Numbers k such that the continued fraction for sqrt(k) has odd period and if the last term of the periodic part is deleted then there are a pair of central terms both equal to 6.
1
109, 281, 865, 922, 1277, 1613, 1769, 1933, 2161, 2341, 2789, 3098, 3653, 3961, 4285, 4457, 5065, 5153, 5713, 5858, 5954, 6101, 6458, 6554, 6709, 7129, 7349, 7681, 8237, 8941, 9242, 9305, 9677, 10177, 10498, 10565, 10693, 10762, 11162, 11365, 11698
OFFSET
1,1
LINKS
T. D. Noe, Table of n, a(n) for n = 1..1000 [shifted by Georg Fischer, Jun 23 2019]
MATHEMATICA
n = 1; t = {}; While[Length[t] < 50, n++; If[! IntegerQ[Sqrt[n]], c = ContinuedFraction[Sqrt[n]]; len = Length[c[[2]]]; If[OddQ[len] && c[[2, (len + 1)/2]] == 6 && c[[2, (len + 1)/2 - 1]] == 6, AppendTo[t, n]]]]; t (* T. D. Noe, Apr 04 2014; corrected by Georg Fischer, Jun 23 2019 *)
CROSSREFS
Subsequence of A003814.
Sequence in context: A193397 A193395 A140036 * A183349 A238682 A070180
KEYWORD
nonn
EXTENSIONS
a(1) corrected by T. D. Noe, Apr 04 2014
a(1) = 10 removed by Georg Fischer, Jun 23 2019
STATUS
approved