[go: up one dir, main page]

login
A029148
Expansion of 1/((1-x^2)(1-x^3)(1-x^5)(1-x^11)).
1
1, 0, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 17, 18, 20, 22, 24, 26, 28, 30, 33, 35, 38, 41, 43, 47, 50, 53, 57, 60, 64, 68, 72, 76, 81, 85, 90, 95, 100, 105, 111, 116, 122, 128, 134, 141, 147, 154, 161, 168, 176, 183, 191, 199, 207
OFFSET
0,6
COMMENTS
a(n) is the number of partitions of n into parts 2, 3, 5, and 11. - Joerg Arndt, Jan 16 2017
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,1,1,0,0,0,-1,-1,0,1,1,0,-1,-1,0,0,0,1,1,0,-1).
FORMULA
G.f.: 1 / ((1 - x)^4*(1 + x)*(1 + x + x^2)*(1 + x + x^2 + x^3 + x^4)*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10)). - Colin Barker, Jan 16 2017
PROG
(PARI) Vec(1 / ((1 - x)^4*(1 + x)*(1 + x + x^2)*(1 + x + x^2 + x^3 + x^4)*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10)) + O(x^100)) \\ Colin Barker, Jan 16 2017
CROSSREFS
Sequence in context: A025769 A103563 A008625 * A067842 A164066 A053251
KEYWORD
nonn,easy
STATUS
approved