OFFSET
0,3
COMMENTS
Number of partitions of n into parts 1, 2, 5 and 6. - David Neil McGrath, Dec 06 2014
Number of walks (closed) on the graph G(1-vertex; 1-loop, 2-loop, 5-loop, 6-loop) where the order of loops is unimportant. - David Neil McGrath, Dec 06 2014
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,1,-1,0,1,0,-2,0,1,0,-1,1,1,-1).
FORMULA
G.f.: 1/((1-x)(1-x^2)(1-x^5)(1-x^6)).
a(n) = -a(-14-n).
a(n) = a(n-2) + a(n-5) + a(n-6) - a(n-7) - a(n-8) - a(n-11) + a(n-13) + 1.
a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-5) - 2*a(n-7) + a(n-9) - a(n-11) + a(n-12) + a(n-13) - a(n-14). - David Neil McGrath, Dec 06 2014
EXAMPLE
There are 6 partitions of n=6 into parts 1, 2, 5 and 6. These are (6)(51)(222)(2211)(21111)(111111). - David Neil McGrath, Dec 06 2014
MATHEMATICA
CoefficientList[Series[1/((1-x)(1-x^2)(1-x^5)(1-x^6)), {x, 0, 60}], x]
LinearRecurrence[{1, 1, -1, 0, 1, 0, -2, 0, 1, 0, -1, 1, 1, -1}, {1, 1, 2, 2, 3, 4, 6, 7, 9, 10, 13, 15, 19, 21}, 70] (* Harvey P. Dale, Dec 14 2020 *)
PROG
(PARI) a(n)=if(n<-13, -a(-14-n), polcoeff(1/((1-x)*(1-x^2)*(1-x^5)*(1-x^6))+x*O(x^n), n))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved