[go: up one dir, main page]

login
A027656
Expansion of 1/(1-x^2)^2 (included only for completeness - the policy is always to omit the zeros from such sequences).
32
1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 0, 16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0, 24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0, 32, 0, 33, 0, 34, 0, 35, 0, 36, 0, 37, 0, 38, 0, 39, 0, 40, 0, 41, 0, 42, 0, 43, 0
OFFSET
0,3
COMMENTS
a(n) is the number of nonnegative integer solutions to the equation x+y+z=n such that x+y=z. - Geoffrey Critzer, Jul 12 2013
FORMULA
From Paul Barry, May 27 2003: (Start)
Binomial transform is A045891. Partial sums are A008805. The sequence 0, 1, 0, 2, ... has a(n)=floor((n+2)/2)(1-(-1)^n)/2.
a(n) = floor((n+3)/2) * (1+(-1)^n)/2. (End)
a(n) = (n+2)(n+3)/2 mod n+2. - Amarnath Murthy, Jun 17 2004
a(n) = (n+2)*(1 + (-1)^n)/4. - Bruno Berselli, Apr 01 2011
a(n) = A008619(n) * A059841(n). - Wesley Ivan Hurt, Jun 17 2013
E.g.f.: cosh(x) + x*sinh(x)/2. - Stefano Spezia, Mar 26 2022
MATHEMATICA
CoefficientList[Series[1/(1-x^2)^2, {x, 0, 100}], x] (* Geoffrey Critzer, Jul 12 2013 *)
PROG
(Magma) [(n+2)*(1+(-1)^n)/4: n in [0..75]]; // Vincenzo Librandi, Apr 02 2011
(PARI) a(n)=if(n%2, 0, n/2+1) \\ Charles R Greathouse IV, Jan 18 2012
(SageMath) [(n+2)*((n+1)%2)/2 for n in (0..80)] # G. C. Greubel, Aug 01 2022
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved