[go: up one dir, main page]

login
A026957
a(n) = Sum_{k=0..n-1} T(n,k) * T(n,k+1), with T given by A026615.
16
1, 6, 35, 154, 613, 2362, 9028, 34510, 132241, 508210, 1958460, 7565906, 29292820, 113633930, 441579702, 1718642278, 6698377449, 26139863330, 102125977396, 399415127682, 1563614796608, 6126581578954, 24024810462810, 94281930087290, 370254213115948, 1454967778894282
OFFSET
1,2
LINKS
FORMULA
a(n) = (n-1)*binomial(2*n, n-1)*(49*n^3 - 105*n^2 + 62*n - 24 )/( 24*binomial(2*n, 4)) - 2*(2*n-1), for n >= 2, with a(1) = 1. - G. C. Greubel, Jun 17 2024
MATHEMATICA
Table[If[n==1, 1, (n-1)*Binomial[2*n, n-1]*(49*n^3 -105*n^2 +62*n -24 )/(24*Binomial[2*n, 4]) - 2*(2*n-1)], {n, 40}] (* G. C. Greubel, Jun 17 2024 *)
PROG
(Magma) [1] cat [(n-1)*Binomial(2*n, n-1)*(49*n^3 -105*n^2 +62*n -24)/( 24*Binomial(2*n, 4)) -2*(2*n-1): n in [2..40]]; // G. C. Greubel, Jun 17 2024
(SageMath) [1]+[(n-1)*binomial(2*n, n-1)*(49*n^3-105*n^2+62*n-24 )/( 24*binomial(2*n, 4)) -2*(2*n-1) for n in range(2, 41)] # G. C. Greubel, Jun 17 2024
KEYWORD
nonn
EXTENSIONS
More terms from Sean A. Irvine, Oct 20 2019
STATUS
approved