[go: up one dir, main page]

login
A026566
a(n) = Sum{T(i,j)}, 0<=j<=i, 0<=i<=n, T given by A026552.
18
1, 3, 9, 20, 53, 117, 308, 684, 1806, 4028, 10664, 23844, 63239, 141612, 376026, 842866, 2239900, 5024166, 13359408, 29980384, 79753402, 179044760, 476451644, 1069936084, 2847931619, 6396900694, 17030741437, 38260956765
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{i=0..n} Sum_{j=0..i} A026552(i, j).
MATHEMATICA
T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[(n+2)/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k] + T[n-1, k-1], T[n-1, k-2] + T[n-1, k]]]]; (* T=A026552 *)
a[n_]:= a[n]= Block[{$RecursionLimit = Infinity}, Sum[T[i, j], {i, 0, n}, {j, 0, i}]];
Table[a[n], {n, 0, 40}] (* G. C. Greubel, Dec 19 2021 *)
PROG
(Sage)
@CachedFunction
def T(n, k): # T = A026552
if (k==0 or k==2*n): return 1
elif (k==1 or k==2*n-1): return (n+2)//2
elif (n%2==0): return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2)
else: return T(n-1, k) + T(n-1, k-2)
@CachedFunction
def a(n): return sum( sum( T(i, j) for j in (0..i) ) for i in (0..n) )
[a(n) for n in (0..40)] # G. C. Greubel, Dec 19 2021
KEYWORD
nonn
STATUS
approved