[go: up one dir, main page]

login
A025564
Triangular array, read by rows: pairwise sums of trinomial array A027907.
15
1, 1, 2, 1, 1, 3, 4, 3, 1, 1, 4, 8, 10, 8, 4, 1, 1, 5, 13, 22, 26, 22, 13, 5, 1, 1, 6, 19, 40, 61, 70, 61, 40, 19, 6, 1, 1, 7, 26, 65, 120, 171, 192, 171, 120, 65, 26, 7, 1, 1, 8, 34, 98, 211, 356, 483, 534, 483, 356, 211, 98, 34, 8, 1, 1, 9, 43, 140, 343, 665, 1050, 1373
OFFSET
0,3
COMMENTS
Counting the top row as row 0, T(n,k) is the number of strings of nonnegative integers "s(1)s(2)s(3)...s(k)" such that s(1)+s(2)+s(3)+...+s(k) = n and the string does not contain the substring "00". E.g., T(3,5) = 8 because the valid strings are 02010, 01020, 11010, 10110, 10101, 01110, 01101 and 01011. T(4,3) = 13, counting 040, 311, 301, 130, 031, 103, 013, 220, 202, 022, 211, 121 and 112. - Jose Luis Arregui (arregui(AT)unizar.es), Dec 05 2007
FORMULA
T(n, k) = T(n-1, k-2) + T(n-1, k-1) + T(n-1, k), starting with [1], [1, 2, 1], [1, 3, 4, 3, 1].
G.f.: (1+yz)/[1-z(1+y+y^2)].
EXAMPLE
1
1 2 1
1 3 4 3 1
1 4 8 10 8 4 1
1 5 13 22 26 22 13 5 1
MATHEMATICA
T[_, 0] = 1; T[1, 1] = 2; T[n_, k_] /; 0 <= k <= 2n := T[n, k] = T[n-1, k-2] + T[n-1, k-1] + T[n-1, k]; T[_, _] = 0;
Table[T[n, k], {n, 0, 10}, {k, 0, 2n}] // Flatten (* Jean-François Alcover, Jul 22 2018 *)
PROG
(PARI) {T(n, k) = if( k<0 || k>2*n, 0, if( n==0, 1, if( n==1, [1, 2, 1][k+1], if( n==2, [1, 3, 4, 3, 1][k+1], T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)))))};
(PARI) T(n, k)=polcoeff(Ser(polcoeff(Ser((1+y*z)/(1-z*(1+y+y^2)), y), k, y), z), n, z)
(PARI) {T(n, k) = if( k<0 || k>2*n, 0, if(n==0, 1, polcoeff( (1 + x + x^2)^n, k)+ polcoeff( (1 + x + x^2)^(n-1), k-1)))};
CROSSREFS
Columns include A025565, A025566, A025567, A025568.
Cf. A025177.
Sequence in context: A159933 A305431 A128314 * A052265 A306565 A055068
KEYWORD
nonn,tabf,easy
EXTENSIONS
Edited by Ralf Stephan, Jan 09 2005
Edited by Clark Kimberling, Jun 20 2012
STATUS
approved