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1. INTRODUCTION

In this study of qualitative random variables the terminology and notation for the

theory which we will develop originates with psychological data. It will be obvious

L that there are many other phenomena which are perfectly analogous. Examples of
such phenomena are given Simon (1955): authors by number of papers published,
words by frequency in a book, cities by population, and genera by number of species;
and by Haight (1966): countries by area, surnames by frequency, automobiles by
make or color, and states by number of area codes.

Consider an infinite population of subjects who are presented sequentially with a
qualitative stémulus and suppose that each subject replies with a well defined qualitative
response. We will let & denote its number of subjects who have been interviewed,
k=0, 1, 2,... and define the following random variables for fixed k.

X, the number of times a given response has been given,

Y,

o

the number of occurrences of a response given by a particular subject,

A the total number of different responses which have been given.

We will denote the probability distributions, probability generating function, and
mean values for these random variables as follows:
237
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P(X}, = n) = pu(n), n=12,...,k
P(Y;,, = n) = q(n), n=12,..,k
P(Z, = n) = r,(n) n=12,..,k

m(s) = 3 o) sy = m/().

k
ox(s) = Z qi(n) 8", v = o/ (1).

n=1

k

T(s) = Z 7i(n) 5™, pr = i (1).

n=1

These definitions are illustrated by the following (hypothetical) example: & = 16
subjects have responded to a fixed stimulus as follows: five have given the response
“A,” three the response “B,” two the response “C” and one each the responses
“D,” “E,” “F)” “G,” “H,” and “1.” This corresponds to the qualitative list:

A 5
B 3
C 2
D 1
E 1
F 1
G 1
H 1
I 1;

and to the quantitative tables

n P1e(m) Qr6(m)
1 6/9 6/16
2 1/9 2/16
3 1/9 3/16
5 1/9 5/16

with the single value Z, = 9.
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It is perfectly clear that the probability transformation between p,(n) and g,(n) can
be written

Qk(n) = [nplc(n)]/;u’]c’ (1)

or in terms of the probability generating functions

proi(s) = s/ (s). (2)

Although the transformation (1) (2) is rather simple, the two distributions need
not be at all similar. For example, if p(n) represents Fisher’s log series distribution,
then g(n) is geometric. Also, it is worth noting that the continuous counterpart of (1)
has a number of applications [cf. Oliver & Jewell (1962); Haight (1962)] of which the
most important is that it connects the lifetime density of a renewal process with the
density of a lifetime containing an arbitrarily chosen instant.

As we shall see in the following section, the distributions characterizing one impor-
tant model are easier to find using the transformation than directly. The reason is
quite simple and yet fundamental: the distribution of X involves Z, (as the total
frequency) whereas the corresponding quantity for the Y, distribution is simply %.

2. Tue YuLe-SimoN MODEL

The process treated by Yule (1924) and Simon (1955) is based on the following
postulates (i) the probability that the (& + 1)% subject gives a response that has not
yet been given is «, a quantity independent of %, and (ii) the probability that the
(k -+ 1) subject gives a response which has already been given 7 times is (1 — ) ¢,(n).

The main result of Simon’s paper is to show that these assumptions imply [where B
denotes the Beta function in usual notation: B(x, y) = Ll, ==Y1 — 1)t dt]

p(n) = pon) =B, m + 1), n=1,2,. 3)

(the Yule distribution) for appropriate parameter values, if an equilibrium does exist.
The proof given by Simon is a little cloudy, attempting as it does to establish a formula
relative to p(n) with postulates based on g(n).

First we shall prove the Yule-Simon theorem systematically. Let the frequencies

be g,(n) = kg, (n).

Case I. (Subject gives new response.) In this case,

&enl(l) = gk(l’) + 1,
Brnlr) = _ﬂ p=2, 3,0 @
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leading to

Grs1(1) = [Rgi(1) + 11/(1 + &),
Gena(n) = [kg(M][(1 + k),  m=2,3,.... )
Case I1. (Subject chooses response that has already been chosen N times.) This

choice will affect the distribution only at the values n = N, N 4 1; the absolute
frequencies will change N and N + 1 units, respectively, as follows:

grn(N) = g(N) — N,
GenN+1) =gN+ 1)+ N+ 1, (6)
Era(n) = gi(n), n= N, N+ 1.

Since the total frequency in this distribution is now & 4 1, we have
Gen(N) = [kg(N) — N1/(1 + &),

Gear(N + 1) = [kgi(N + 1) + N + 1]/(1 + &), (7
Gea(n) = (k1 + &),  n5* N, N+ 1.

Each of the probabilities (5) (7) is conditional on the choice of response, the former
having prior probability « and the latter (1 — a) g,(%); we now form the expressions
for unconditional probabilities. Since the value N has special effect only on values of
n = N, N - 1, a probability with index n will be specially affected only by N = n — 1,
n. Thus,

Gen(l) = A + Rk — 1 + o) (1) + o,

Genn(m) = (B + Hn(l — lgu(r — 1) — @] + kg(m)},  n = 2,3,...
with probability generating function
Tenl) = (& + 1) Has + [k + (1 — a)s] oy(s) + (1 — @) s(s — 1)(d)ds) o (5)-
If we now assume equilibrium (and drop the subscript) we have a linear differential
equation

dos) . 1—s(l—a) . o
s TU—asi—9 W T Ty ="

(10)

It is not difficult to show that Eqs. (3) and (10) are connected by Egs. (1) and (2).
First we transform the Yule distribution to the corresponding g(n):

gn) = (n — 1) nB(n,n + 1), n=1,2,.., (11)
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since the mean value of the Yule distribution is

po=mln —1). (12)

Referring to Ryshik and Gradstein [1963, p. 143 (3.181)] we find that the probability
generating function of Eq. (11) is

@D

o(s) =) (n — 1) ns"B(n,n + 1),

=(n— 1) fl (1 — 2)"(1 — sx)~2 dx, (13)
0
= s[(n — D/(n + DIF2, 1; 1 + 2;9),

where F' denotes a hypergeometric function in usual notation. The derivative of Eq.
(13) can be easily found from Erdelyi [1953, Vol. I, p. 103 (31)] to be

do A=l
ds g +1

F2,2;m 4 2;9), (14)

and we note that Eq. (13) and (14) satisfy Eq. (10) when

7 =11 — a). (15)

This completes the proof of the Yule-Simon result, evading direct treatment of py(n).
From Egs. (12) and (15) we see that ua = 1. Thus, in equilibrium, the probability
of a neologism is the reciprocal of E(X).

If we try to find p,(n) in the same straightforward manner, we strike difficulties at
once. In the equation corresponding to Eq. (5) (as well as those which follow) the
quantity in the denominator is no longer the constant (1 4- k) but a value of the random
variable (1 4 Z;,).

We approach this question by means of a sequence of generalization of the model.

3. YuLe-SiMmoN MoDEL; FIRST GENERALIZATION

In this section we will propose two modifications of the Yule-Simon Model: (i) «,
the probability of a neologism, will be dependent on the state of the system, and
therefore written «,, for the case where k& subjects have already been tested, (ii) the
assumption of equilibrium will not be made. It is clear that many models would require
the probability of a new item in the list to decrease with the length of the list; indeed
it is difficult to think of a realistic psychological situation where o would be constant.
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The first equations in Section 2 that need to be modified are Eqs. (8); now we
introduce «y, in place of o, writing

Gesa(D) = (R + DM — 1 + o) gu(1) + o],

976+1(n) = (k + 1)_1{71(1 - Olk)[(]k(’ﬂ - ]) - Qk(n)] _“ qu(n)}) n = 2» 3y'--1 k + (1177)

and similarly for the probability generating function

op(s) = (& + 1)t fans + [k 4 (1 — ag)s] an(s) 4 (1 — o) s(s — 1) % o (s)i- (18)

We note the first few values of ¢,(n) obtained recursively from Egs. (17) with
a(1) =

g(1) = oy,
302) =1 — o,
3(1) = §logon + o + ).
3:(2) = $og + oy — 20y0),
35(3) = (1 — o)(1 — ),
s(1) = %20 + 20 + 3o + 2005 + oy + ooy - oy 00x3),
94(2) = (2o + 206 + oo - gy — oy — Soyon0r,)
2.(3) = 1(20q + 205 + 30y — doyjor, — Soqoy — Sogery - Ty op0;),
7a(4) = (1 — o)(1 — a)(1 — o),

and so forth. The corresponding values of p,(n) can be found from Eq. (1):

2u0) = @) n Y, fgumf. (19)

The summation in the denominator of Eq. (19) is of course the reciprocal of the
harmonic mean of Y; by mathematical induction on % we find its value to be

>, (G} = (L o oo ) (20)

Since the kth distribution g,(n) will contain (k — 1) parameters, its usefulness will
not be great without assuming some relationship between the parameters. If for
example they form a harmonic series o, = 1/(k -+ 1), it follows that q:(n) Is rectangular:

gi(n) = 1/, n=1,2,.k

2
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This can be verified by induction if we substitute the generating function for the
rectangular distribution into Eq. (18). Then

pun) = [n(l + 1/2 4+ 1/3 + - + 1/&4, n=1,2..,k 1)

4. THE DISTRIBUTION OF Z,

It is not difficult to find expressions for 7,(n) from the definitions Z, and ot They
are symmetric functions of o; and (1 — o;),j = 1,..., k. For example, if £ = 4 we have:

ra(1) = (1 — o)(1 — ap)(1 — o),
74(2) = (1 — o)(1 — ap) oy + (1 — ap)(1 — ag) g + (1 — eg)(1 — o) g,
74(3) = (1 — o) agey + (1 — ) oy + (1 — o) oy,

r4(4) = a0y .
In the general case, we can write the difference equation
1) = rp(n — 1) oy, + r(m)(1 — o). n=1,.,k k=12.. (22)

The corresponding difference equation for the generating function is

Trra($) = [(1 — o) 4 seu] m(s), (23)
which is easily solved:
k-1
7(s) = s [T (1 — o + say). (24)
j=1

In case oy, = o a constant, we see that Z, is binomially distributed in the Yule-Simon
model.

5. Tue Zipr MODEL

Zipf (1949) argued for very general types of data, principally population sizes, that
the relative frequency of the nth category should be proportional to #n=?, where § is a
parameter. In another paper (Haight, 1969) we have shown that this hypothesis is
equivalent to

) =@n— 18— Qn+1)*  n=123... (25)
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It is easy to see that, for this distribution the probability generating function 7(s)

satisfies
w(s) — 1 = s
s—1 2 (@2n+ 1) (26)
and the mean p can be expressed in terms of the Riemann Zeta Function:
w=(1—2%) (P
The corresponding values of the g(n) distribution are
n[(2n — 1)F — (2n + 1)77]
n) = 28
) 129 1) 29
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