[go: up one dir, main page]

login
A025396
Numbers that are the sum of 3 positive cubes in exactly 2 ways.
10
251, 1009, 1366, 1457, 1459, 1520, 1730, 1737, 1756, 1763, 1793, 1854, 1945, 2008, 2072, 2241, 2414, 2456, 2458, 2729, 2736, 3060, 3391, 3457, 3592, 3599, 3655, 3745, 3926, 4105, 4112, 4131, 4168, 4229, 4320, 4376, 4402, 4437, 4447, 4473, 4528, 4616
OFFSET
1,1
COMMENTS
Subset of A008917; A025397 gives examples of numbers which are in A008917 but not here. - R. J. Mathar, May 28 2008
A025456(a(n)) = 2. - Reinhard Zumkeller, Apr 23 2009
Superset of A024974 . - Christian N. K. Anderson, Apr 11 2013
LINKS
Christian N. K. Anderson, Table of n, a(n) for n = 1..10000
Christian N. K. Anderson, Decomposition of the first 10000 terms into the sets of three cubes
EXAMPLE
a(1) = 251 = 1^3+5^3+5^3 = 2^3+3^3+6^3. - Christian N. K. Anderson, Apr 11 2013
MATHEMATICA
Select[Range[5000], Length[DeleteCases[PowersRepresentations[#, 3, 3], _?(MemberQ[#, 0]&)]] == 2&] (* Harvey P. Dale, Jan 18 2012 *)
PROG
(PARI) is(n)=k=ceil((n-2)^(1/3)); d=0; for(a=1, k, for(b=a, k, for(c=b, k, if(a^3+b^3+c^3==n, d++)))); d
n=3; while(n<5000, if(is(n)==2, print1(n, ", ")); n++) \\ Derek Orr, Aug 27 2015
KEYWORD
nonn
STATUS
approved