[go: up one dir, main page]

login
A025106
a(n) = s(1)t(n) + s(2)t(n-1) + ... + s(k)t(n-k+1), where k = [ n/2 ], s = (F(2), F(3), F(4), ...), t = (odd natural numbers).
0
3, 5, 17, 23, 50, 62, 119, 141, 251, 289, 496, 560, 939, 1045, 1729, 1903, 3122, 3406, 5559, 6021, 9795, 10545, 17120, 18336, 29731, 31701, 51361, 54551, 88338, 93502, 151367, 159725, 258523, 272049, 440272, 462160, 747883, 783301, 1267505, 1324815, 2143698
OFFSET
1,1
FORMULA
G.f.: x*(3-x+4*x^2-4*x^3-2*x^4-2*x^5-x^6-x^7)/ ((x-1)^2*(x^4+x^2-1)^2) [From Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009]
MATHEMATICA
LinearRecurrence[{2, 1, -4, 3, -2, -1, 4, -3, 2, -1}, {3, 5, 17, 23, 50, 62, 119, 141, 251, 289}, 50] (* Harvey P. Dale, Sep 15 2024 *)
CROSSREFS
Sequence in context: A231232 A154608 A024862 * A333199 A203193 A079649
KEYWORD
nonn
EXTENSIONS
G.f. proposed by Maksym Voznyy checked and corrected by R. J. Mathar, Sep 16 2009.
STATUS
approved