[go: up one dir, main page]

login
A024356
Determinant of Hankel matrix of the first 2n-1 prime numbers.
10
1, 2, 1, -2, 0, 288, -1728, -26240, 222272, 1636864, -8434688, -61820416, 238704640, 544024576, 3294658560, -71814283264, 359994671104, 17294535000064, 302441193013248, -2311203985948672, -11313883306262528, -31078379553816576, 26574426771056230400
OFFSET
0,2
COMMENTS
Determinant of n X n matrix with entries prime(X+Y-1).
a(0) = 1 by convention.
I conjecture that a(4) is the only zero. - Jon Perry, Mar 22 2004
LINKS
EXAMPLE
a(2) = 1 because det[[2,3],[3,5]] = 1.
From Klaus Brockhaus, May 12 2010: (Start)
a(5) = determinant(M) = 288 where M is the matrix
[ 2 3 5 7 11]
[ 3 5 7 11 13]
[ 5 7 11 13 17]
[ 7 11 13 17 19]
[11 13 17 19 23] . (End)
MATHEMATICA
a[n_]:=Det[Table[Prime[i+j-1], {i, n}, {j, n}]]; Join[{1}, Array[a, 20]] (* Stefano Spezia, Feb 03 2024 *)
PROG
(PARI) for (i=0, 20, print1(", "matdet(matrix(i, i, X, Y, prime(X+Y-1))))) \\ Jon Perry, Mar 22 2004
(Magma) Hankel_prime:=function(n); M:=ScalarMatrix(n, 0); for j in [1..n] do for k in [1..n] do M[j, k]:=NthPrime(j+k-1); end for; end for; return M; end function; [ Determinant(Hankel_prime(n)): n in [0..22] ];
[1] cat [ Determinant( SymmetricMatrix( &cat[ [ NthPrime(j+k-1): k in [1..j] ]: j in [1..n] ] ) ): n in [1..22] ]; // Klaus Brockhaus, May 12 2010
CROSSREFS
Cf. A290302.
Sequence in context: A356919 A278158 A218880 * A143947 A226518 A337518
KEYWORD
sign
AUTHOR
Jeffrey Shallit, Jun 08 2000
STATUS
approved