[go: up one dir, main page]

login
A024323
a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n+1-k), where k = floor((n+1)/2), s = A023531, t = (odd natural numbers).
17
0, 0, 3, 5, 7, 9, 11, 13, 24, 28, 32, 36, 40, 44, 48, 52, 73, 79, 85, 91, 97, 103, 109, 115, 121, 127, 160, 168, 176, 184, 192, 200, 208, 216, 224, 232, 240, 248, 295, 305, 315, 325, 335, 345, 355, 365, 375, 385, 395, 405, 415, 425, 488, 500, 512, 524, 536, 548, 560, 572, 584
OFFSET
1,3
LINKS
FORMULA
a(n) = Sum_{j=1..floor((n+1)/2)} A023531(j)*(2*n -2*j + 1). - G. C. Greubel, Jan 20 2022
MATHEMATICA
A023531[n_]:= SquaresR[1, 8n+9]/2;
a[n_]:= Sum[A023531[j]*(2*n-2*j+1), {j, Floor[(n+1)/2]}];
Table[a[n], {n, 70}] (* G. C. Greubel, Jan 20 2022 *)
PROG
(Magma)
A023531:= func< n | IsIntegral( (Sqrt(8*n+9) - 3)/2 ) select 1 else 0 >;
[ (&+[A023531(j)*(2*n-2*j+1): j in [1..Floor((n+1)/2)]]) : n in [1..70]]; // G. C. Greubel, Jan 20 2022
(Sage)
def A023531(n):
if ((sqrt(8*n+9) -3)/2).is_integer(): return 1
else: return 0
[sum( A023531(j)*(2*n-2*j+1) for j in (1..floor((n+1)/2)) ) for n in (1..70)] # G. C. Greubel, Jan 20 2022
KEYWORD
nonn
STATUS
approved