OFFSET
0,4
COMMENTS
Diagonal sums of the Riordan array (1/(1-x),x(1+x+x^2+x^3)) yield a(n+1). - Paul Barry, May 10 2005
LINKS
Robert Israel, Table of n, a(n) for n = 0..4837
J. H. E. Cohn, Letter to the editor, Fib. Quart. 2 (1964), 108.
V. E. Hoggatt, Jr. and D. A. Lind, The dying rabbit problem, Fib. Quart. 7 (1969), 482-487.
Index entries for linear recurrences with constant coefficients, signature (1,1,0,0,0,-1).
FORMULA
G.f.: x/(1 - x - x^2 + x^6) = x/((1 - x)(1 - x^2 - x^3 - x^4 - x^5)). - Paul Barry, May 10 2005
MAPLE
f:= gfun:-rectoproc({a(n)=a(n-1) + a(n-2) - a(n-6), seq(a(i)=0, i=-4..0), a(1)=1}, a(n), 'remember'):
seq(f(n), n=0..50); # Robert Israel, Dec 29 2014
MATHEMATICA
a=b=c=d=e=0; f=1; lst={e, f}; Do[g=e+f-a; AppendTo[lst, g]; a=b; b=c; c=d; d=e; e=f; f=g, {n, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Nov 30 2009 *)
LinearRecurrence[{1, 1, 0, 0, 0, -1}, {0, 1, 1, 2, 3, 5}, 40] (* Harvey P. Dale, Dec 21 2014 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved