OFFSET
0,2
COMMENTS
a(n) is Euler transform of A010716. - Alois P. Heinz, Oct 17 2008
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
Roland Bacher, P. De La Harpe, Conjugacy growth series of some infinitely generated groups. 2016. hal-01285685v2;
P. Nataf, M. Lajkó, A. Wietek, K. Penc, F. Mila, A. M. Läuchli, Chiral spin liquids in triangular lattice SU (N) fermionic Mott insulators with artificial gauge fields, arXiv preprint arXiv:1601.00958 [cond-mat.quant-gas], 2016.
N. J. A. Sloane, Transforms
FORMULA
G.f.: Product_{m>=1} 1/(1-x^m)^5.
a(n) ~ 5^(3/2) * exp(Pi * sqrt(10*n/3)) / (32 * 3^(3/2) * n^2) * (1 - (3*sqrt(6/5) /Pi + 5*sqrt(5/6)*Pi/24) / sqrt(n)). - Vaclav Kotesovec, Feb 28 2015, extended Jan 16 2017
a(0) = 1, a(n) = (5/n)*Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - Seiichi Manyama, Mar 26 2017
G.f.: exp(5*Sum_{k>=1} x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 06 2018
MAPLE
with(numtheory): a:=proc(n) option remember; `if`(n=0, 1, add(add(d*5, d=divisors(j)) *a(n-j), j=1..n)/n) end: seq(a(n), n=0..40); # Alois P. Heinz, Oct 17 2008
MATHEMATICA
nmax=50; CoefficientList[Series[Product[1/(1-x^k)^5, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 28 2015 *)
PROG
(PARI) \ps100 for(n=0, 100, print1((polcoeff(1/eta(x)^5, n, x)), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved