[go: up one dir, main page]

login
A022236
Gaussian binomial coefficients [ n,7 ] for q = 7.
1
1, 960800, 807744680100, 667157540444234400, 549661852436388016181802, 452697105941691435357049202400, 372818701621367349292382501162685300, 307032604808067352305645854537522502703200, 252854596323205247053675081227392663237129990403
OFFSET
7,2
REFERENCES
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
LINKS
FORMULA
a(n) = Product_{i=1..7} (7^(n-i+1)-1)/(7^i-1), by definition. - Vincenzo Librandi, Aug 06 2016
G.f.: x^7/((1 - x)*(1 - 7*x)*(1 - 49*x)*(1 - 343*x)*(1 - 2401*x)*(1 - 16807*x)*(1 - 117649*x)*(1 - 823543*x)). - Ilya Gutkovskiy, Aug 06 2016
MATHEMATICA
Table[QBinomial[n, 7, 7], {n, 7, 20}] (* Vincenzo Librandi, Aug 06 2016 *)
PROG
(Sage) [gaussian_binomial(n, 7, 7) for n in range(7, 16)] # [Zerinvary Lajos, May 27 2009]
(Magma) r:=7; q:=7; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 06 2016
CROSSREFS
Sequence in context: A341898 A092377 A348123 * A083609 A093216 A272555
KEYWORD
nonn
AUTHOR
EXTENSIONS
Offset changed by Vincenzo Librandi, Aug 06 2016
STATUS
approved