[go: up one dir, main page]

login
A020782
Expansion of 1/((1-7x)(1-8x)(1-9x)).
1
1, 24, 385, 5160, 62401, 706104, 7628545, 79669320, 810888001, 8089258584, 79415935105, 769621605480, 7379461252801, 70134974713464, 661651583000065, 6203106293141640, 57847125937972801, 537010118353326744
OFFSET
0,2
FORMULA
If we define f(m,j,x)=sum(binomial(m,k)*stirling2(k,j)*x^(m-k),k=j..m) then a(n-2)=f(n,2,7), (n>=2). - Milan Janjic, Apr 26 2009
a(n) = 24*a(n-1) - 191*a(n-2) + 504*a(n-3), n>=3. - Vincenzo Librandi, Mar 15 2011
a(n) = 17*a(n-1) - 72*a(n-2) + 7^n, n>=2. - Vincenzo Librandi, Mar 15 2011
a(n) = 7^(n+2)/2 -8^(n+2) +9^(n+2)/2. - R. J. Mathar, Mar 15 2011
MATHEMATICA
CoefficientList[Series[1/((1-7x)(1-8x)(1-9x)), {x, 0, 20}], x] (* or *) LinearRecurrence[{24, -191, 504}, {1, 24, 385}, 20] (* Harvey P. Dale, Aug 20 2013 *)
CROSSREFS
Sequence in context: A269181 A266185 A114631 * A025952 A028031 A042108
KEYWORD
nonn
STATUS
approved