[go: up one dir, main page]

login
A019973
Decimal expansion of tangent of 75 degrees.
18
3, 7, 3, 2, 0, 5, 0, 8, 0, 7, 5, 6, 8, 8, 7, 7, 2, 9, 3, 5, 2, 7, 4, 4, 6, 3, 4, 1, 5, 0, 5, 8, 7, 2, 3, 6, 6, 9, 4, 2, 8, 0, 5, 2, 5, 3, 8, 1, 0, 3, 8, 0, 6, 2, 8, 0, 5, 5, 8, 0, 6, 9, 7, 9, 4, 5, 1, 9, 3, 3, 0, 1, 6, 9, 0, 8, 8, 0, 0, 0, 3, 7, 0, 8, 1, 1, 4, 6, 1, 8, 6, 7, 5, 7, 2, 4, 8, 5, 7
OFFSET
1,1
COMMENTS
An equivalent definition of this sequence: decimal expansion of x > 1 satisfying x^2 - 4*x + 1 = 0. - Arkadiusz Wesolowski, Nov 28 2011
An algebraic integer of degree 2 with minimal polynomial x^2 - 4*x + 1. - Charles R Greathouse IV, Oct 17 2016
Length of the second longest diagonal in a regular 12-gon with unit side. - Mohammed Yaseen, Dec 13 2020
LINKS
FORMULA
Equals 2 + sqrt(3) = 2+A002194 = cotangent of 15 degrees. - Rick L. Shepherd, Jul 04 2004
Equals exp(arccosh(2)). - Amiram Eldar, Aug 07 2023
c^n = A001835(n) + (1 + sqrt(3)) * A001353(n) = A001075(n) + sqrt(3) * A001353(n); where c = 2 + sqrt(3). - Gary W. Adamson, Oct 14 2023
Equals lim_{n->oo} S(n, 4)/ S(n-1, 4), with the S-Chebyshev polynomial (see A049310) S(n, 4) = A001353(n+1). See the A001353 formula from Oct 06 2002 by Gregory V. Richardson. - Wolfdieter Lang, Nov 15 2023
Equals A019884 / A019824. - R. J. Mathar, Jan 12 2024
Equals 1/A019913. - Hugo Pfoertner, Mar 24 2024
EXAMPLE
3.732050807568877293527446341505872366942805253810380628...
MATHEMATICA
RealDigits[Tan[75 Degree], 10, 120][[1]] (* Harvey P. Dale, Nov 08 2011 *)
RealDigits[2+Sqrt[3], 10, 100][[1]] (* G. C. Greubel, Nov 20 2018 *)
PROG
(PARI) sqrt(3)+2 \\ Charles R Greathouse IV, Oct 17 2016
(Magma) SetDefaultRealField(RealField(100)); 2 + Sqrt(3); // G. C. Greubel, Nov 20 2018
(Sage) numerical_approx(2+sqrt(3), digits=100) # G. C. Greubel, Nov 20 2018
KEYWORD
nonn,cons,easy
EXTENSIONS
Checked by Neven Juric (neven.juric(AT)apis-it.hr), Feb 04 2008
STATUS
approved