[go: up one dir, main page]

login
A019514
a(n) = (n!)^3 + 1.
3
2, 2, 9, 217, 13825, 1728001, 373248001, 128024064001, 65548320768001, 47784725839872001, 47784725839872000001, 63601470092869632000001, 109903340320478724096000001, 241457638684091756838912000001
OFFSET
0,1
COMMENTS
Since this is a sum of two cubes, it can be factorized. So all terms are divisible by n!+1. Thus only two primes occur in this sequence: a(0) and a(1). - Dmitry Kamenetsky, Sep 30 2008
REFERENCES
M. Le, On the Interesting Smarandache Product Sequences, Smarandache Notions Journal, Vol. 9, No. 1-2, 1998, 133-134.
M. Le, The Primes in Smarandache Power Product Sequences, Smarandache Notions Journal, Vol. 9, No. 1-2, 1998, 96-97.
F. Iacobescu, Smarandache Partition Type and Other Sequences, Bull. Pure Appl. Sciences, Vol. 16E, No. 2 (1997), pp. 237-240.
LINKS
Eric Weisstein's World of Mathematics, Factorial
Eric Weisstein's World of Mathematics, Smarandache Sequences
MATHEMATICA
Table[(n!)^3 + 1, {n, 0, 25}] (* G. C. Greubel, Nov 30 2016 *)
CROSSREFS
Sequence in context: A204265 A343406 A081086 * A135816 A157341 A038036
KEYWORD
nonn,easy
AUTHOR
R. Muller
STATUS
approved