[go: up one dir, main page]

login
A019390
Primes with primitive root 67.
1
2, 5, 13, 19, 23, 41, 47, 53, 59, 61, 71, 83, 101, 103, 107, 109, 113, 127, 131, 137, 163, 167, 197, 223, 227, 229, 233, 263, 307, 313, 337, 359, 401, 409, 419, 431, 439, 467, 479, 491, 521, 523, 541, 571, 593, 607, 619, 653, 659, 673, 677, 701, 719, 743, 751, 809, 827
OFFSET
1,1
COMMENTS
To allow primes less than the specified primitive root m (here, 67) to be included, we use the essentially equivalent definition "Primes p such that the multiplicative order of m mod p is p-1". - N. J. A. Sloane, Dec 02 2019
MATHEMATICA
Select[Prime[Range[200]], MultiplicativeOrder[67, #] == # - 1 &]
CROSSREFS
Sequence in context: A045365 A104491 A038950 * A073770 A077545 A069943
KEYWORD
nonn
STATUS
approved