[go: up one dir, main page]

login
A190959
a(n) = 3*a(n-1) - 5*a(n-2), with a(0)=0, a(1)=1.
2
0, 1, 3, 4, -3, -29, -72, -71, 147, 796, 1653, 979, -5328, -20879, -35997, -3596, 169197, 525571, 730728, -435671, -4960653, -12703604, -13307547, 23595379, 137323872, 293994721, 195364803, -883879196, -3628461603, -6465988829, -1255658472, 28562968729
OFFSET
0,3
COMMENTS
This is the Lucas U(P=3, Q=5) sequence. - R. J. Mathar, Oct 24 2012
a(n+2)/a(n+1) equals the continued fraction 3 - 5/(3 - 5/(3 - 5/(3 - ... - 5/3))) with n 5's. - Greg Dresden, Oct 06 2019
FORMULA
G.f.: x/(1 - 3*x + 5*x^2). - Philippe Deléham, Oct 11 2011
E.g.f.: 2*exp(3*x/2)*sin(sqrt(11)*x/2)/sqrt(11). - Stefano Spezia, Oct 06 2019
MATHEMATICA
LinearRecurrence[{3, -5}, {0, 1}, 50]
PROG
(PARI) x='x+O('x^30); concat([0], Vec(x/(1-3x+5*x^2))) \\ G. C. Greubel, Jan 25 2018
(Magma) I:=[0, 1]; [n le 2 select I[n] else 3*Self(n-1) - 5*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 25 2018
CROSSREFS
Cf. A190958 (index to generalized Fibonacci sequences), A190970 (binomial transf.), A106852 (inv. bin. transf., shifted).
Sequence in context: A287463 A288404 A287986 * A038018 A108658 A240669
KEYWORD
sign,easy
AUTHOR
STATUS
approved