[go: up one dir, main page]

login
A018885
Squares using no more than two distinct digits.
7
0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 225, 400, 441, 484, 676, 900, 1444, 7744, 10000, 11881, 29929, 40000, 44944, 55225, 69696, 90000, 1000000, 4000000, 9000000, 9696996, 100000000, 400000000, 900000000, 6661661161, 10000000000
OFFSET
1,3
COMMENTS
Is 6661661161 the largest term not of the form 10^k, 4*10^k or 9*10^k? Any larger ones must have >= 22 digits. - Robert Israel, Dec 03 2015
LINKS
Alexandru Gica and Laurentiu Panaitopol, On Oblath's Problem, J. Integer Seqs., Vol. 6(3), 2003, article 03.3.5.
Eric Weisstein's World of Mathematics, Square Number
FORMULA
For n > 4, a(n) = A016069(n-4)^2.
MAPLE
F:= proc(r, a, b, m)
# get all squares starting with r, with at most m further digits, all from {a, b} where a < b
local res, Ls, Us, L, U, looking;
if issqr(r) then res:= r else res:= NULL fi;
if m = 0 then return res fi;
Ls:= r*10^m + a*(10^m-1)/9;
Us:= r*10^m + b*(10^m-1)/9;
L:= isqrt(Ls);
if L^2 > Ls then L:= L-1 fi;
U:= isqrt(Us);
if U^2 < Us then U:= U+1 fi;
if L > U then res
else res, procname(10*r+a, a, b, m-1), procname(10*r+b, a, b, m-1)
fi
end proc:
S2:= {seq(i^2 mod 100, i=0..99)}:
prs:= map(t -> `if`(t < 10, {0, t}, {(t mod 10), (t - (t mod 10))/10}), S2):
prs:= map(p -> `if`(nops(p)=1, seq(p union {s}, s={$0..9} minus p), p), prs):
Res:= NULL:
for p in prs do
a:= min(p); b:= max(p);
if a > 0 then
Res:= Res, F(a, a, b, 14);
fi;
Res:= Res, F(b, a, b, 14);
od:
sort(convert({0, Res}, list)); # Robert Israel, Dec 03 2015
MATHEMATICA
Select[Range[0, 10^5]^2, Length@ Union@ IntegerDigits@ # <= 2 &] (* Michael De Vlieger, Dec 03 2015 *)
Select[Range[0, 100000]^2, Count[DigitCount[#], 0]>7&] (* Harvey P. Dale, Jul 25 2020 *)
PROG
(PARI) for (n=0, 10^6, if ( #Set(digits(n^2))<=2, print1(n^2, ", ") ) ); \\ Michel Marcus, May 21 2015
CROSSREFS
KEYWORD
nonn,base
EXTENSIONS
0 inserted and definition edited by Jon E. Schoenfield, Jan 15 2014
STATUS
approved