[go: up one dir, main page]

login
A018800
Smallest prime that begins with n.
17
11, 2, 3, 41, 5, 61, 7, 83, 97, 101, 11, 127, 13, 149, 151, 163, 17, 181, 19, 2003, 211, 223, 23, 241, 251, 263, 271, 281, 29, 307, 31, 3203, 331, 347, 353, 367, 37, 383, 397, 401, 41, 421, 43, 443, 457, 461, 47, 487, 491, 503, 5101, 521, 53, 541, 557, 563, 571, 587, 59
OFFSET
1,1
COMMENTS
Conjecture: If a(n) = (n concatenated with k) then k < n. - Amarnath Murthy, May 01 2002
a(n) always exists. Proof. Suppose n is L digits long, and consider the numbers between n*10^B and n*10^B+10^C, where B > C are both large compared with L. All such numbers begin with the digits of n. Using the upper and lower bounds on pi(x) from Theorem 1 of Rosser and Schoenfeld, it follows that for sufficiently large B and C, at least one of these numbers is a prime. QED - N. J. A. Sloane, Nov 14 2014
LINKS
T. D. Noe, Table of n, a(n) for n = 1..1000 (first 100 terms from Paolo P. Lava)
J. Barkley Rosser and Lowell Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), pp. 64-94.
FORMULA
a(n) = prime(A085608(n)). - Michel Marcus, Oct 19 2013
MAPLE
f:= proc(n) local x0, d, r, y;
if isprime(n) then return(n) fi;
for d from 1 do
x0:= n*10^d;
for r from 1 to 10^d-1 by 2 do
if isprime(x0+r) then
return(x0+r)
fi
od
od
end proc:
seq(f(n), n=1..100); # Robert Israel, Dec 23 2014
MATHEMATICA
Table[Function[d, FromDigits@ SelectFirst[ IntegerDigits@ Prime@ Range[10^4], Length@ # >= Length@ d && Take[#, Length@ d] == d &]][ IntegerDigits@ n], {n, 59}] (* Michael De Vlieger, May 24 2016, Version 10 *)
PROG
(Haskell)
import Data.List (isPrefixOf, find); import Data.Maybe (fromJust)
a018800 n = read $ fromJust $
find (show n `isPrefixOf`) $ map show a000040_list :: Int
-- Reinhard Zumkeller, Jul 01 2015
(PARI) a(n{, base=10}) = for (l=0, oo, forprime (p=n*base^l, (n+1)*base^l-1, return (p))) \\ Rémy Sigrist, Jun 11 2017
(Python)
from sympy import isprime
def a(n):
if isprime(n): return n
pow10 = 10
while True:
t, maxt = n * pow10 + 1, (n+1) * pow10
while t < maxt:
if isprime(t): return t
t += 2
pow10 *= 10
print([a(n) for n in range(1, 60)]) # Michael S. Branicky, Nov 02 2021
CROSSREFS
A164022 is the base-2 analog.
Cf. also A258337.
Row n=1 of A262369.
Sequence in context: A077549 A089356 A113616 * A258337 A089566 A010191
KEYWORD
nonn,base
STATUS
approved