A note on A018248 ## Peter Bala, Nov 10 2022 NAME: The 10-adic integer x = ...1787109376 satisfies $x^2 = x$. $6, 7, 3, 9, 0, 1, 7, 8, 7, 1, 8, 0, 0, 4, 7, 3, \dots$ DATA: The table below shows the trailing digits of the integers 2^{10^n} , 4^{10^n} and 6^{10^n} , with the final n+1 digits in bold. | n | 2^{10^n} | 4^{10^n} | 6^{10^n} | |---|------------------|------------------|------------------| | 2 | 03205 376 | 35301 376 | 41477 376 | | 3 | 6806 9376 | 4902 9376 | 1078 9376 | | 4 | 967 09376 | 6309376 | 239 09376 | | 5 | 83109376 | 79 109376 | 55109376 | | 6 | 47109376 | 0 7109376 | 67109376 | | 7 | 87109376 | 87109376 | 87109376 | Claim. For n >= 2, the final n+1 digits of either 2^{10^n} , 4^{10^n} or 6^{10^n} , when read in reverse order, give the first n+1 entries in A018248. The proof is an easy consequence of the following result due to Euler: the congruence $$a^{p^r} \equiv a^{p^{r-1}} \pmod{p^r} \tag{1}$$ holds for all integers $a \in \mathbb{Z}$, for all primes p and all positive integers r. a) Let $n \geq 2$. First we show that the integers 2^{10^n} and $2^{10^{n+1}}$ have the same final n+1 decimal digits, that is, $$2^{10^{n+1}} \equiv 2^{10^n} \pmod{10^{n+1}} \tag{2}$$ or, equivalently, $$2^{10^n} \left(2^{9(10^n)} - 1 \right) \equiv 0 \pmod{2^{n+1} 5^{n+1}}.$$ Clearly, 2^{n+1} divides 2^{10^n} . Thus to prove (2) it suffices to show that $$2^{9(10^n)} - 1 \equiv 0 \pmod{5^{n+1}}. \tag{3}$$ Setting $a=2^m, \ m$ a nonnegative integer, r=n+1 and p=5 in Euler's congruence (1) yields $$2^{m5^{n+1}} \equiv 2^{m5^n} \pmod{5^{n+1}}$$ leading to $$2^{m5^n} \left(2^{4m(5^n)} - 1 \right) \equiv 0 \pmod{5^{n+1}}$$ and hence $$2^{4m(5^n)} - 1 \equiv 0 \pmod{5^{n+1}}.$$ (4) Setting $m = \frac{9(2^n)}{4}$ (an integer for $n \ge 2$) in (4) yields (3) and thus establishes (2). An immediate consequence of this result is that $$x := \text{the } 10\text{-adic limit}\{n \to \infty\} 2^{10^n} \mod 10^n$$ is a well-defined 10-adic integer. b) Still with n >= 2, we show next that the integers 2^{10^n} and 4^{10^n} have the same final n+1 decimal digits. Put $m = \frac{2^n}{4}$ in (4) to find $$2^{10^n} - 1 \equiv 0 \pmod{5^{n+1}}. (5)$$ Multiplying the congruence (5) by 2^{10^n} we see that $$4^{10^n} - 2^{10^n} \equiv 0 \pmod{10^{n+1}}. \tag{6}$$ Thus the integers 2^{10^n} and 4^{10^n} have the same final n+1 decimal digits. It follows from (6) that $$x^2 = \text{the 10-adic limit}_\{n \to \infty\} \, 4^{10^n} = \text{the 10-adic limit}_\{n \to \infty\} \, 2^{10^n} = x.$$ Therefore, x is an idempotent in the ring of 10-adic integers (with its rightmost digit equal to 6) and so must be A018248 (the other 3 idempotents being 0, 1 and A018247 = 1 - x = ...18212890625). c) By an argument similar to that which proved (5) we can show that $$3^{10^n} - 1 \equiv 0 \pmod{5^{n+1}}. (7)$$ Multiplying (7) by 2^{10^n} leads to the congruence $$6^{10^n} - 2^{10^n} \equiv 0 \pmod{10^{n+1}},\tag{8}$$ showing that the integers 2^{10^n} and 6^{10^n} also have the same final n+1 decimal digits.