A note on A018248

Peter Bala, Nov 10 2022

NAME: The 10-adic integer x = ...1787109376 satisfies $x^2 = x$.

 $6, 7, 3, 9, 0, 1, 7, 8, 7, 1, 8, 0, 0, 4, 7, 3, \dots$ DATA:

The table below shows the trailing digits of the integers 2^{10^n} , 4^{10^n} and 6^{10^n} , with the final n+1 digits in bold.

n	2^{10^n}	4^{10^n}	6^{10^n}
2	03205 376	35301 376	41477 376
3	6806 9376	4902 9376	1078 9376
4	967 09376	6309376	239 09376
5	83109376	79 109376	55109376
6	47109376	0 7109376	67109376
7	87109376	87109376	87109376

Claim. For n >= 2, the final n+1 digits of either 2^{10^n} , 4^{10^n} or 6^{10^n} , when read in reverse order, give the first n+1 entries in A018248.

The proof is an easy consequence of the following result due to Euler: the congruence

$$a^{p^r} \equiv a^{p^{r-1}} \pmod{p^r} \tag{1}$$

holds for all integers $a \in \mathbb{Z}$, for all primes p and all positive integers r. a) Let $n \geq 2$. First we show that the integers 2^{10^n} and $2^{10^{n+1}}$ have the same final n+1 decimal digits, that is,

$$2^{10^{n+1}} \equiv 2^{10^n} \pmod{10^{n+1}} \tag{2}$$

or, equivalently,

$$2^{10^n} \left(2^{9(10^n)} - 1 \right) \equiv 0 \pmod{2^{n+1} 5^{n+1}}.$$

Clearly, 2^{n+1} divides 2^{10^n} . Thus to prove (2) it suffices to show that

$$2^{9(10^n)} - 1 \equiv 0 \pmod{5^{n+1}}. \tag{3}$$

Setting $a=2^m, \ m$ a nonnegative integer, r=n+1 and p=5 in Euler's congruence (1) yields

$$2^{m5^{n+1}} \equiv 2^{m5^n} \pmod{5^{n+1}}$$

leading to

$$2^{m5^n} \left(2^{4m(5^n)} - 1 \right) \equiv 0 \pmod{5^{n+1}}$$

and hence

$$2^{4m(5^n)} - 1 \equiv 0 \pmod{5^{n+1}}.$$
 (4)

Setting $m = \frac{9(2^n)}{4}$ (an integer for $n \ge 2$) in (4) yields (3) and thus establishes (2).

An immediate consequence of this result is that

$$x := \text{the } 10\text{-adic limit}\{n \to \infty\} 2^{10^n} \mod 10^n$$

is a well-defined 10-adic integer.

b) Still with n >= 2, we show next that the integers 2^{10^n} and 4^{10^n} have the same final n+1 decimal digits.

Put $m = \frac{2^n}{4}$ in (4) to find

$$2^{10^n} - 1 \equiv 0 \pmod{5^{n+1}}. (5)$$

Multiplying the congruence (5) by 2^{10^n} we see that

$$4^{10^n} - 2^{10^n} \equiv 0 \pmod{10^{n+1}}. \tag{6}$$

Thus the integers 2^{10^n} and 4^{10^n} have the same final n+1 decimal digits. It follows from (6) that

$$x^2 = \text{the 10-adic limit}_\{n \to \infty\} \, 4^{10^n} = \text{the 10-adic limit}_\{n \to \infty\} \, 2^{10^n} = x.$$

Therefore, x is an idempotent in the ring of 10-adic integers (with its rightmost digit equal to 6) and so must be A018248 (the other 3 idempotents being 0, 1 and A018247 = 1 - x = ...18212890625).

c) By an argument similar to that which proved (5) we can show that

$$3^{10^n} - 1 \equiv 0 \pmod{5^{n+1}}. (7)$$

Multiplying (7) by 2^{10^n} leads to the congruence

$$6^{10^n} - 2^{10^n} \equiv 0 \pmod{10^{n+1}},\tag{8}$$

showing that the integers 2^{10^n} and 6^{10^n} also have the same final n+1 decimal digits.