%I #23 Jun 28 2023 21:51:21
%S 1,75,2775,67525,1215450,17259390,201359550,1984829850,16871053725,
%T 125595622175,828931106355,4898229264825,26123889412400,
%U 126600387152400,560658857389200,2280012686716080,8550047575185300,29673694525643100,95615237915961100
%N Binomial coefficients C(75,n).
%C Row 75 of A007318.
%H Nathaniel Johnston, <a href="/A017791/b017791.txt">Table of n, a(n) for n = 0..75</a> (full sequence)
%F From _G. C. Greubel_, Nov 15 2018: (Start)
%F G.f.: (1+x)^75.
%F E.g.f.: 1F1(-75; 1; -x), where 1F1 is the confluent hypergeometric function. (End)
%p seq(binomial(75,n), n=0..75); # _Nathaniel Johnston_, Jun 24 2011
%t Binomial[75, Range[0,75]] (* _G. C. Greubel_, Nov 15 2018 *)
%o (Sage) [binomial(75, n) for n in range(17)] # _Zerinvary Lajos_, May 28 2009
%o (PARI) vector(75, n, n--; binomial(75,n)) \\ _G. C. Greubel_, Nov 15 2018
%o (Magma) [Binomial(75,n): n in [0..75]]; // _G. C. Greubel_, Nov 15 2018
%o (GAP) List([0..75], n -> Binomial(75,n)); # _G. C. Greubel_, Nov 15 2018
%Y Cf. A010926-A011001, A017765-A017790, A017792-A017816.
%K nonn,fini,full,easy
%O 0,2
%A _N. J. A. Sloane_