[go: up one dir, main page]

login
A017115
a(n) = (8*n + 4)^3.
1
64, 1728, 8000, 21952, 46656, 85184, 140608, 216000, 314432, 438976, 592704, 778688, 1000000, 1259712, 1560896, 1906624, 2299968, 2744000, 3241792, 3796416, 4410944, 5088448, 5832000, 6644672, 7529536, 8489664, 9528128, 10648000, 11852352, 13144256, 14526784, 16003008
OFFSET
0,1
FORMULA
G.f.: 64*(1+x)*(x^2 + 22*x + 1)/(x-1)^4. - R. J. Mathar, Jul 14 2016
From Amiram Eldar, Apr 25 2023: (Start)
a(n) = A017113(n)^3.
a(n) = 2^3*A016827(n) = 2^6*A016755(n).
Sum_{n>=0} 1/a(n) = 7*zeta(3)/512.
Sum_{n>=0} (-1)^n/a(n) = Pi^3/2048. (End)
MATHEMATICA
LinearRecurrence[{4, -6, 4, -1}, {64, 1728, 8000, 21952}, 24] (* Ray Chandler, Aug 04 2015 *)
PROG
(Magma) [(8*n+4)^3: n in [0..35] ]; // Vincenzo Librandi, Jul 21 2011
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved