[go: up one dir, main page]

login
A016295
Expansion of 1/((1-2x)(1-5x)(1-6x)).
1
1, 13, 117, 905, 6461, 43953, 289717, 1868425, 11861421, 74423393, 462815717, 2858273145, 17556537181, 107373722833, 654414852117, 3977351721065, 24118423433741, 145982106270273, 882250466222917
OFFSET
0,2
FORMULA
a(n) = A016129(n+1) - A016127(n+1). - Zerinvary Lajos, Jun 05 2009
a(n) = 13*a(n-1) - 52*a(n-2) + 60*a(n-3), n >= 3.
a(n) = 11*a(n-1) - 30*a(n-2) + 2^n, n >= 2. - Vincenzo Librandi, Mar 16 2011
a(n) = 7*a(n-1) - 10*a(n-2) + 6^n, n >= 2. - Vincenzo Librandi, Mar 16 2011
a(n) = 8*a(n-1) - 12*a(n-2) + 5^n, n >= 2. - Vincenzo Librandi, Mar 16 2011
a(n) = -5^(n+2)/3 + 9*6^n + 2^n/3. - R. J. Mathar, Mar 18 2011
MATHEMATICA
LinearRecurrence[{13, -52, 60}, {1, 13, 117}, 20] (* Harvey P. Dale, Mar 26 2016 *)
PROG
(Sage) [(6^n - 2^n)/4-(5^n - 2^n)/3 for n in range(2, 21)] # Zerinvary Lajos, Jun 05 2009
CROSSREFS
KEYWORD
nonn
STATUS
approved