%I #24 May 10 2021 11:13:52
%S 25,45,55,91,95,99,125,135,143,153,155,161,175,187,225,235,245,247,
%T 261,273,275,279,285,289,297,319,329,333,335,355,363,369,387,391,403,
%U 407,413,423,425,429,435,437,441,459,473,477,481,483,493,507,517,525,529
%N Numbers k such that 2^k mod k is odd.
%C All terms are composite: due to Fermat's little theorem, 2^p == 2 (mod p) when p is prime. - _M. F. Hasler_, May 10 2021
%H Zak Seidov, <a href="/A015911/b015911.txt">Table of n, a(n) for n = 1..10000</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Fermat%27s_little_theorem">Fermat's little theorem</a>.
%p q:= n-> is(2&^n mod n, odd):
%p select(q, [$1..1000])[]; # _Alois P. Heinz_, May 10 2021
%t Select[Range@532, OddQ@PowerMod[2, #, # ] &]
%o (PARI) is(n)=lift(Mod(2,n)^n)%2 \\ _Charles R Greathouse IV_, May 31 2013
%Y Cf. A015910, A226221.
%K nonn
%O 1,1
%A _Robert G. Wilson v_