[go: up one dir, main page]

login
A015317
Gaussian binomial coefficient [ n,5 ] for q = -11.
4
1, -147630, 23974093353, -3858153003126520, 621401842151984058606, -100076766678577032638496300, 16117472448301015835209097979510, -2595734922068255016665440444288632600
OFFSET
5,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
FORMULA
G.f.: x^5/((1 - x)*(1 + 11*x)*(1 - 121*x)*(1 + 1331*x)*(1 - 14641*x)*(1 + 161051*x)). - Ilya Gutkovskiy, Aug 16 2016
MATHEMATICA
Table[QBinomial[n, 5, -11], {n, 5, 20}] (* Vincenzo Librandi, Oct 29 2012 *)
PROG
(Sage) [gaussian_binomial(n, 5, -11) for n in range(5, 13)] # Zerinvary Lajos, May 27 2009
CROSSREFS
Sequence in context: A111044 A189789 A204105 * A195363 A224424 A065323
KEYWORD
sign,easy
AUTHOR
Olivier GĂ©rard, Dec 11 1999
STATUS
approved