[go: up one dir, main page]

login
A015217
Sum of Gaussian binomial coefficients for q=24.
2
1, 2, 27, 1204, 375629, 400208358, 2991792531583, 76486991418728216, 13721923923633091909041, 8419357054564884621321079882, 36250698926534384563556930107015907, 533815775315492783921121148190498865117564
OFFSET
0,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
FORMULA
a(0) = 1, a(1) = 2, a(n) = 2*a(n-1) + a(n-2)*((24^(n-1)) - 1). - Vincenzo Librandi, Nov 02 2012
MATHEMATICA
Total/@Table[QBinomial[n, m, 24], {n, 0, 20}, {m, 0, n}] (* Vincenzo Librandi, Nov 02 2012 *)
CROSSREFS
Row sums of triangle A022188.
Sequence in context: A221534 A221535 A067075 * A320417 A113094 A327128
KEYWORD
nonn
STATUS
approved